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Abstract unusually fast for a simulator that models fine detail: it simulates
about 700,000 processor cycles per second on a SPARC 10 host. In
Talisman is a simulator that models the execution semantics and addition, it models the semantics of virtual address translation and
timing of a multicomputer. Talisman is unique in combining high processor supervisor and user modes, and thus executes a full range
semantic accuracy, high timing accuracy, portabitityd good per- of operating system and user code.
formance. This good performance allows users to run significant  We achieved simulation efficiency by starting with a fast, thread-
programs on large simulated multicomputers. The combination of ed-code simulator and adding only those timing models needed to
high accuracy and good performance yields an ideal tool for eval- achieve accuracy. This approach resembles that used to gain se-
uating architectural trade-offs. Talisman models the semantics of mantic accuracy in Talisman’s predecessor [1]. To measure timing
virtual memory, a circuit-switched internode interconnect, I/O de- accuracy, we ran a suite of benchmarks on Talisman and the Meerkat
vices, and instruction execution in both user and supervisor modes. prototype. Test results guided our grafting of timing models onto
It also models the timing of processor pipelines, caches, local mem- the threaded-code simulator base.
ory buses, and a circuit-switched interconnect. Talisman executes  We introduce the roles of architecture simulation in Section 2.
the same program binary images as a hardware prototype at a cosSection 3 describes some of the varied approaches to simulation.
of about 100 host instructions per simulated instruction. On a suite Section 4 relates the structure of Talisman, the performance of
of accuracy benchmarks run on the hardware and the simulator, which is analyzedin Section 5. The development of timing models
Talisman and the prototype differ in reported running times by only and Talisman timing accuracy are discussedin Section 6. Section 7
a few percent. describes some of the specific advantages of using Talisman.

1 Introduction 2 Roles and Benefits of Architecture Simulation

This papet describes the structure, performance, accuracy, calibra- Computer architecture simulators vary widely in their application.
tion, and use of Talisman, the Meerk§2] system simulator. We  They are used by processor architects to evaluate uniprocessor de-
used Talisman to extend performance results from a four node hard-sign tradeoffs [8], operating system authors to debug their code [1]
ware prototype to systems with hundreds of nodes. We also usedand to evaluate operating system performance [6, 25], parallel sys-
Talisman to evaluate the performance implications of architectural tem architects to assess the performance of large systems [4, 9, 23],
tradeoffs in the Meerkat design space. and end users to execute programs written for one system on a
Talisman has a desirable combination of features that, as far different host system [19, 26, 27].
as we know, is unmatched by any other simulator. Unlike other Simulators also vary in their performance and the level of detail
simulators used for architectural evaluation, Talisman models the they can model. A common metric is tHew-down, or the average
fine detail of hundreds of nodes running significant programs. It is number of simulator host instructions executed per simulated in-
T : o , ) - struction (see work by Magnusson and others for a more extensive
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Meerkat'ls a Enoc'ierately scalable multicomputer architecture that uses a software applications in an acceptable timeframe.
controlled, circuit-switched network.

2.1 Benefits of Architecture Simulation

There are several benefits of using a simulator for evaluating mul-
ticomputer architectures:

¢ Simulators can be augmented relatively easily with new mea-
surement and debugging features.



e Simulators of large systems are easier to make work and are 3.3 Direct Execution

less expensive than hardware implementations. . .
P P The target program can also be executed directly on the simulator

¢ New network interfaces can be added in a few days. It is host [5, 13, 23] by encasing the program in an environment that
often impractical to retrofit hardware with new interfaces. ~ makes it execute as though it were on the simulated system. This
technique requires that either the host system have the same instruc-
¢ Simulators can model “ideal” networks that are impossible to  tion set as the target or that the program be recompiled. Instructions
build, e.g., an infinitely fast network. that cannot execute directly on the host are replaced with procedure
calls to simulator code.

Most direct execution simulators inspect and translate all in-
structions before simulation begins, i.e., statically. This is incom-
patible with the needs of a simulator that can model operating system
e Simulators are not subject to prototype failures. code (this is discussed in Section 4.10). To evaluate tradeoffs in

multicomputer architecture, we needed to simulate both user and
¢ Simulators can be givento other researchers. While hardware kernel code.
is difficult to transport, a simulator can be sent electronically. Direct execution simulators are fast to execute instructions that
) ) can be run directly, but are often slow both to handle instructions
e As many simulators can be running as there are hosts and that can not be run directly and to handle exceptions. Depending on
host memory. Thus, multiple experiments can be run concur- the ratio of directly executed instructions to non-direct instructions
rently on a simulator. Hardware prototypes are usually few anq exceptional events, direct execution simulators can be taster
in number. dower than other kinds of simulators. For example, a simulator that
on average executes two instructions directly and then switches to
another simulated processor by executing lengthy context-switching
code may be slower than a threaded-code simulator (threaded-code
is discussed in Section 3.5) that takes more time to simulate instruc-
tions but much less time to switch from one simulated processor to
another.
3 Simulation Strategies A promising approach is the one taken by SimOS [24]. This
simulator handles both user and kernel code by dynamically trans-
The best simulation method depends on the application of the sim- lating target instructions into short sequences of host-native code.
ulation results. This section outlines several simulation strategies Unlike most direct execution simulators, SimOS keeps only a lit-
and their applications. tle of the target machine’s state in host registers and so is able to
multiplex between target processors quickly.

e The determinism of simulator execution makes program bugs
repeatable, which is not always the case for hardware imple-
mentations.

There are other benefits of simulators, such as the ability to:
(1) non-intrusively generate address traces of user and system code
and (2) stress-test operating system software by causing the mos
serious and complex interrupt and exception conditions.

3.1 Microarchitecture Simulation

. . . . . . 3.4 Blurred Lines Between Simulation Techniques
Microarchitecturesimulatorsare built by logic designersto express

and test new designs. They can also execute short sequences of codeseveral tools can be considered fast macro simulators that dynam-
enabling designers to evaluate architectural features and debug mi-ically translate code, or direct execution simulators, or profiling
crocode. Microarchitecture simulators typically have a slow-down tools. The UNIX utility pr of is a profiling tool that is not usually
around 20,000 [22], making them too slow for debugging all but called a simulator. But it could be considered a direct execution
the shortest code sequences. simulator that wraps the target program in an environment enabling
execution measurement. Shade [8] is thought of as a fast macro
simulator that uses dynamic compilation. While it is more flexible
thanpr of and uses dynamic instead of static compilation, it is also
Macroarchitecture simulators (also callethacro simulators ofin- a tracing tool. The line between different tracing and simulation
struction set architecture simulators) can execute longer-running techniquesis often blurred despite efforts to neatly categorize them.
programs. They are used for studying cache performance and de-
bugging operating system code in advance of hardware availability. 3.5 The Talisman Approach: Threaded-Code
Unlike micro simulators, macro simulators often model the chip’s
timing closely, but not perfectly. Measuring Meerkat’s design required a simulator efficient enough
Because they model less detail, they are much smaller and fasterto run significant programs on hundreds of simulated processors. In
than micro simulators. Conventional macro simulators have slow- addition, it had to model timing accurately. We could not afford to
downs on the order of 10 to 1000. They dispatch instructions by spend years constructing a complex simulator or waiting for results
fetching from a simulated memory, isolating the operation code from a slow one.
fields, and branching based on the values of these fields. Once For these reasons, we wrote a simulator that translates instruc-
dispatched, the instruction’s semantics are simulated by reading andtions to threaded code [3, 14], which is then executed. The threaded
manipulating simulation variables that represent the target system’scode is cached, so that the price of translation for most instructions
state. is paid just once, the first time they are encountered in the code
Several techniques can improve the performance of macro sim- stream. The result is a simulator that has a slow-down of about 100
ulators. Instead of decoding the operation fields each time an in- per simulated processor. lIts timing is close enough to the proto-
struction is executed, the instruction is translated once into a form type’s that we can use it to run large programs and make meaningful
that is faster to execute. This idea has been used in a variety of measurements.
simulators for a number of applications [8, 10, 17, 19, 26]. Itis
also used in some processorsto translate an instruction setthat prog  structure of Talisman
grammers see into a more RISC-like form that is more efficient to

execute [7, 11]. Figure 1 shows the structure of Talisman. Users interact with Tal-
isman through a symbolic debugger called gdb [28]. Talisman con-

3.2 Macroarchitecture Simulation
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Figure 1: Talisman Structure

sists of an instruction translator, a threaded-code interpreter [3], and puts it in r2.

cache models, a TLB model, a physical memory system model, and

I/0 models. Meerkat uses Motorola MC88100 processors[20] and 4 2  |nstruction Pointers
we refer to MC88100 in the text below as the “target”.

Meerkat programs are compiled, assembled, and linked with a Talisman maintains two instruction pointers that are updated to-
set of GNU cross-development tools on a SPARCstation host. The gether and are always kept consistent: the decoded instruction
resulting binary image can then be run on either the Meerkat proto- pointer (DECIP) and the modelled instruction pointer (IP). The
type or on Talisman. On invocation, Talisman loads the code, data, IP is the value of the target virtual address of the next instruction to
and symbol table. It then calls through the simulator interface to: execute. After non-branching instructions, the IP and the DECIP
(1) place the code and data in simulated memory, (2) set up profiling are incremented by four and twenty, respectively (target instructions
structures, and (3) initialize registers. take four bytes, decoded instructions take twenty bytes). Branching

When the user issues tliein command, the front end calls  instructions are described in Section 4.11.
the threaded code interpreter. Execution returns to the front end
upon an exceptional condition, such as a breakpoint or a special4,3 Decoded Instruction Pages
trap instruction indicating that the simulated program has finished.

The remainder of this section relates the key techniques that Decoded instruction pages contain slots that hold decoded instruc-
Talisman uses. tions. Each decoded instruction page corresponds to a physical
page of a particular node’'s memory. Decoded instruction pages
are allocated when a running program attempts to execute code on
a physical page that does not yet have a corresponding decoded
Talisman does not interpret target instructions directly. Instead, page. Both physical page structures and decoded instruction page

4.1 Translation to Threaded Code

instructions are first translated tiecoded instructions, which are structures are allocated lazily.

cached in structures callefbcoded instruction pages. Only in- When a decoded instruction page is first allocated, and when it
structions encountered during execution are translated and cachedis flushed, it is filled withdecode-me pseudo instructions. When a

so unlike Mimic [19], there is little startup overhead. decode-me pseudoinstruction executes, a target instruction is trans-

Decoded instructions contain up to six fields. The first field lated toadecodedinstruction. The targetinstruction is fetched from
always points to the decoded instructioh@ndler, the code that the address on the physical page that corresponds to the position of
interprets the instruction. This pointer makes it easy to dispatch the decode-me pseudo instruction in the decoded instruction page.
decoded instructions. On most simulator hosts, this dispatch con- For example, if the decode-me pseudo instruction in the tenth slot is
sists of two instructions: a load followed by an indirect jump. For executed, the tenth word in the corresponding physical page is trans-
triadic target instructions, three of the decoded instruction fields are lated. The new decoded instruction replaces the pseudo instruction,
pointers to host memory that models the target registers. The lastand this new instruction is executed.
two fields hold the length and type of memory access instructions. There are 1025 decoded instruction slots in each decoded in-

Figure 2 shows an unsigned add instruction followed by a load struction page. The first 1024 of these hold decoded instructions
instruction. The add instruction sums the contents of r5 and r6 and that can be in a physical page (a physical page is four kilobytes,
stores the result in r4. The load calculates the effective address asand each MC88100 instruction takes four bytes). The 1025th slot
the sum of r4 and 1000. It loads a word from the effective address holds a sentinel called threqualify-decoded-ip pseudo instruction.
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Figure 3: Talisman Data Structures

When a non-branching decoded instruction in the 1024th slot is

finished executing, the DECIP is incremented and points to the

requalify-decoded-ip pseudo instruction. Because the flow of con-

trol has moved off of the page, the DECIP must be recomputed

to point to the first decoded instruction of the new page. The use
of requalify-decoded-ip pseudo-instructions as sentinels speeds in-
struction handlers, because they never need to explicitly check for
the end-of-page condition.

Dividing the physical and decoded instruction spacesinto pages
allows incremental, demand-driven allocation of memory. This
lazy memory allocation conserves host virtual memory (a point
discussed in the next section).

Talisman does not perform garbage collection. Avoiding gar-
bage collection kept Talisman simpler at the expense of higher
virtual memory consumption. Since the units of allocation are large
(4k for a physical page structure, 20k for a decoded instruction
page), garbage collection would probably be redundant with the
host’s virtual memory system. That is, garbage collection would
reclaim memory contained on pages which would otherwise be
paged out. Thus, garbage collection would conserve host virtual
memory, not physical memory, at the expense of higher simulator
complexity.

In Figure 3, note that the second page of physical and decoded
instruction memory is allocated (i.e., the second pointer in both
the physical and decoded instruction page maps are filled in). In
this example, either the front end or a running program accessed
the second page, causing a physical memory page to be allocated.
Also, an attempt has been made to execute an instruction on the
second page, causing a decoded instruction page to be allocated.

The memory maps will gradually fill in as the running program
executes memory access instructions and branches to new pages.
Typically, however, large pieces of both maps are vacant. The
decoded instruction map is especially likely to be sparse; vacancy
represents conserved host virtual address space. Because these
maps are replicated for each node, large simulations would require
far more virtual memory than is available on the largest hosts if
Talisman did not use a sparse representation. The startup time to
initialize simulation memory would also be enormous.

For example, an FFT of 32,768 points on 256 nodes, each
with 1 MB of simulated physical memory, requires about 50 MB
of decoded instruction memory out of a total process requirement
of 260 MB. (In this example the working set is approximately
100 MB.) If Talisman did not allocate memory on demand, the
FFT would consume 1342 MB for decoded instruction memory
alone. We estimate that the steady-state penalty for the sparse
4.4 Processor State and Memory Use representation is well less than one percent in both execution time

Figure 3 shows the relationship among processor state, simulatedandTrﬁem%r¥h%°gszun;ﬁgggﬁon conserves memory. the space taken
physical memory, and the decoded instruction pages. Upon simu- for deggc?ed instrué/tions can limit the simulator’s ﬁ’se Wg were not
lation start-up, the user specifies the number of nodes, number of :

processors per node, and size of node memory. Talisman allocates® limited in our work, butit is easy to imagine programs that, when

an array of processor state structures to match the user’s request'"" " hundreds of processors, would take a gigabyte of decoded

The processor state holds pointers to the physical memory map anol|nstrl_Jction memory. There are several straightforward_ solutions
the decoded instruction map for the node. Al of a given node’s '© this problem: (1) allocate smaller decoded instruction pages
processor state structures point to the same maps: a node’s memorgzj reduce internal fragmentation, (2) reclaim decoded instruction
is shared by all of its processors. The state structure also contains®@d€S that have not been recently used, (3) share decoded instruc-

all of the processor’s registers and counters to maintain execution tion pages between processors. The first solution is straightforward
and will only increase the page-crossing cost. The second solution



could be done in conjunction with full modelling of the i-cache access the time-available value by adding a constant to the register
and will probably result in only a small decrease in performance. pointef
The third solution is possible, and is used by Magnusson [17], but The timing of the data cache is modelled by keeping track of
has a number of problems with instruction cache modelling, debug- what the tag state of a real MC88200 cache [21] would be. Talis-
ger breakpoints, register access, and support for multiple programman models the MC88200’s Least Recently Used (LRU) behavior
workloads. by keeping the cycle count of the most recent access to each cache
line. While this takes more storage than the LRU bit scheme that
the hardware uses, it is simpler to understand and faster to exe-
cute. The data cache model calculates the time-available value for
To model the number of cycles an instruction takes, each simulated load instructions and puts this value in the destination register’s
processor has an associated current cycle count. This variable iscorresponding time-available slot.
incremented by every handler to reflectthe number of cyclesittakes ~ The MC88100 processor has a three-slot pipeline in the Data
to issue the instruction. Memory Unit (DMU) through which all memory access instruc-
The MC88100 has a register scoreboard; it contains one bit tions must flow after they are issued (see Figure 5). Each load or
for each general purpose register. When multicycle instructions store of a word or less uses one DMU slot; double-word loads and
issue, they set the scoreboard bit corresponding to the instruction’sstores use two slots. When the pipeline is full, a memory instruc-
destination registers. When multicycle instructions finish, their tion attempting to issue will stall until the slots it requires become
destination register scoreboard bits are reset. Issued instructionsavailable. When the request in slot zero is satisfied, the pipeline
stall the processor until the operand register's scoreboard bits areshifts the contents of slot one to slot zero and slot two to slot one.
clear. The scoreboard mechanism ensures correct operation ofAfter the shift, slot two is free to accept a new request.
instructions that use values produced by multicycle instructions. Talisman keeps a three-element array of time-available values
Talisman models the scoreboard with an arratjroé-available to model when the reference in each slot of a real MC88100 DMU
values that correspond to general registers (see Figure 4). Everypipeline would be available. Each DMU slot used advances the
multicycle instruction handler sets the time-available slot corre- current processor cycle to the maximum of the current cycle count
sponding to its destination register to the cycle count value when and the time-available value in the oldest slot (slot 0). The array
the register in the hardware would be available. The handler then is shifted down to eliminate the oldest slot and to make available
produces the result and stores it in the destination register. Instruc-the slot at the other end of the array (slot two). Slot two is then
tions that read registers advance the processor cycle count to thefilled with the time at which the reference in a real MC88100 would
maximum of the time-available slots corresponding to each operand vacate the DMU.
register and the current cycle count.

4.5 Modelling Basic Instruction Execution Time

4.6 Processor Switching

register O value Talisman simulates a multiple-processor system on a single-proces-
register 1 value sor host l_)y executing a few cycles of each simulated processor
Field of Decoded before switching to the next processor. The default number of cycles
register 2 value = Instruction per switch is 10. The user can change this number. Each instruction
3 handler checks to see if the processor cycle quantum has expired.
§ If it has, the handler branches to code that finds another processor
Do to simulate and then dispatches the next instruction for the new
register 31 value ! Fixed offset processor. Because each instruction handler runs to completion,
- - - 3 processor switching is done between instructions only. A processor
register 0 time-avail | can thus take more time than the quantum provides.
register 1 time-avail § Talisman chooses processors so as to minimize skew between
. . . 3 any pair of processors. It examines a circular list of running proces-
register 2 time-avail | < sorsin around-robin order and picks the first one whose cycle count
is below the current system cycle-count threshold. It increases the

threshold only when all processors have executed beyond it.

To keep the cost of switching low, only four key processor-
dependentinterpreter variables are keptin host registers: DECIP, IP,
a pointer to the current processor’s state structure, and the processor
current cyclé.

There is one instruction that can take a long time to execute:
a store of acache-copyback command to the control register of a
d data cache that is full of dirty data will take about 10,000 cycles.

For example, if araddu instruction reads registers three an The processor executing this instruction will jump far ahead in
four and takes one cycle to issue, and if registers three and four have P 9 jump

time-available counts of 105 and 107 respectively, and if the cycle simulated time and will not execute its next instruction until the other
count before thaddu issue is 100, then the proceésor cycle count processors have caught up. Instructions are not interruptible on

register 31 time-avail

Figure 4: Relationship between General Registers and Time-Avail-
able Array

will be set to 107 by theddu handler. In this case, the one-cycle

issue time and the time to wait for register three are hidden by the

time to wait for register four, as in the real processor.

the simulator or the hardware, and tteehe-copyback command

3A subtle implication of this method is that the literal pools must have dummy
time-available slots that are in the same relationship to the literal values as the real

The scoreboard model depends on being able to calculate thetime-available slots are to the register values: instruction handlers dereference operand

time-available for all multicycle instructions at the time the instruc-
tions issue. This was possible in Talisman, and we believe that it
will be so for most similar systems.

pointers the same way for both register and immediate operands.

“Talisman’s predecessor kept just the DECIP in a host register and calculated IP
when its value was needed [1]. The predecessor was written for a host with few
registers, and it therefore made sense to calculate the IP from the DECIP. Doing so

Instruction handlers access the time-available slots using the in the current version would complicate the threaded-code interpreter, and Talisman’s

same pointers they use to access the register values.

Handleré‘OSt has enough registers for both DECIP and IP variables.
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writes no data that is visible to the program. This means that 2. All four MC88100 instructions in the cache-line that cor-
the simulator’'s semantic and timing behavior is the same as the responds to the executed decode-me pseudo-instruction are
hardware’s. Long-running instructions execute frequently in the translated to decoded instructions.

benchmarks discussed in Section 6.

This method for modelling instruction cache cold misses re-
quires no extra work in the case of a decoded instruction cache hit
and little extra work in the case of a miss. However, it simulates
While most instruction handlers are in a single large function, mem- only cold misses: while the real instruction cache is finite (4096
ory access instruction handlers are complex and so call a separatdnstructions), the decoded instruction cacheis unlimited. A straight-
function for most of their semantic effect. The memory access forward extension would model capacity misses by invalidating a
function first translates the data’s virtual address by calling the TLB cache-line of decoded instructions when a real instruction cache
model. The TLB model simulates the Motorola MC88200’s 56- would replace a valid cache line. We considered implementing this
entry TLB. TLB misses delay the memory access, as they do in the extension, but felt it was unnecessary because the benchmarksfit in
hardware. the instruction cache and experience few capacity misses.

The physical address computed by the TLB model is checked
to see if it is an I/O address or a memory address. If it is the 4 g Modelling 1/0
former, the 1/0 module is called. Otherwise, the physical memory
map is accessedto find the host memory that models the addressedVhen the load/store function encounters an address outside the
simulated memory. Host memory is allocated if it is not yet in the range of physical memory, it calls the I/O module with this address
map. The memory operation is performed, and the data cache stateand a pointer to the decoded load/store instruction. The I/O module
is updated using the physical address returned by the TLB model. searches a table that relates address ranges to particular /O model

Unlike the real cache, the data cache model does not contain functions. The table lookup corresponds to the address decoders
the data itself. It contains tags, LRU information, and state bits. found in hardware between the processor address bus and the /O
The lack of data storage in the cache means that memory coherencelevice select signafs
errors can be latent on Talisman that are manifest on the hardware,  The /O models include Meerkat's 32-bit cycle counter, interrupt
and vice versa. In other words, an artifact of the data cache model controller status and control registers, internode status and control
is that memory is always coherent. If the operating system does notregisters, internode DMA controller,
flush the data cache when it should, the error will not be seen on MC88200 [21] (cache and memory management unit) control pages,
Talisman, though it may be seen on the hardware. Or, a bug may and some pseudo-devices. Pseudo-devices models are accessed by
occur running on Talisman that is the result of cached memory being the simulated program just as are other device models, but pseudo-
overwritten. Such a bug may be latent on the hardware, because thedevices do not correspond to any real devices. Pseudo-device mod-
hardware processor may read the correct value from cache and notels allow the simulated program control over execution statistics
see the erroneous value in memory. collection. For example, one such model allows a program to turn

For our purposes, this difference in memory coherency was a execution profiling on and off.
small price to pay for a simpler cache model and smaller cache
state. In addition, it causes no timing inaccuracies. Magnussong. 10 Modelling Supervisor Mode
and Werner describe an alternative approach to modelling memory
systems in their paper on SimICS [16]. Many simulators, especially fast simulators, model only user mode.
This limitation greatly reduces the value of such simulators in evalu-
ating architectural tradeoffs because operating system performance
and operating system interactions are significant factors in deter-
Talisman models instruction cache cold misses, but not capacity mining overall system performance.
misses. It models cold misses by distinguishing between trans-  Talisman supports both user and supervisor modes by allow-
lated and untranslated instructions. When a decode-me pseudo4ng instructions to be discovered at run-time, and by modelling
instruction is encountered: the semantics of virtual-to-physical address translation, cache and

TLB manipulation operations, synchronous and asynchronous ex-

1. The processor’s cycle count is advanced to reflect the time to ceptions, the trap-time registers that support exception processing,

fetch an instruction cache line.

4.7 Modelling Data Memory Access

4.8 Modelling Instruction Memory Access

STalisman’s predecessor used a hashing scheme to speed the lookup [1]. However,
Talisman has a small table of devices, and the lookup time is not significant.



various /O devices, and supervisor-only instructions. Operating switch time. All tests reported here use a processor switch time of
systems typically reveal code at run-time and so cannot run on 10 cycles. We found the difference in simulator accuracy between
simulators that depend on processing instructions prior to simu- switching every cycle and switching every 10 cycles to be insignif-
lation [19]. For example, a simulator that has to preprocess all icant (our notion of “accuracy” is discussed in the next section). At
instructions before the simulation is started cannot deal with an this setting, the performance ranged from 500,000 to 750,000 sim-
operating system that loads program text from a simulated disk. ulated processor cycles per second on a SPARC-10/36.hbistis,

In addition, some operating systems generate code on the fly in on average, Talisman simulates one Meerkat processor cycle in 54
response to user requests [18]. to 72 SPARC-10 cycles. While some workloads could cause much

The execution cost of supervisor modelling is mostly seen in lower or higher performance, all of the tests we used were in this
the memory access instructions, which must consult the TLB. To range. The programs we used to measure simulator performance
mitigate this cost, we carefully coded the TLB model to be efficient. are the same as those used to test accuracy (see Section 6).

We estimate that overall execution performance is reduced by less ~ The SPARC-10 host can do more per cycle than the processor
than ten percent due to supervisor-mode modelling. we model. Therefore, the figure of 54 to 72 SPARC-10 cycles per

Supervisor mode modelling adds significant complexity to the Meerkat processor cycle must be adjusted to make a fair estimate
simulator, especially in the area of exceptions and device models. of Talisman’s slow-down. We estimate that the SPARC-10 has half
However, this complex code was both tractable and necessary. All the Clocks Per Instruction (CPI) of the Meerkat processors. This
of the programs we ran made extensive use of supervisor mode. meansthat there is roughly a slow-down of 100to 150 per simulated
processor.

The system slow-down is the ratio of the number of host cycles
it takes to simulate one cycle of a whole Meerkat. Simulating one
The handlers for control transfer instructions update both the IP and cycle of a multi-node Meerkat requires simulating one cycle of
the DECIP. Updating the IP is easy: the new value is computed by each processor and the interconnect. To calculate this figure, we
adding a branch displacement to the IP’s value or by taking a target multiply the per-processor slow-down by the number of simulated
register value. Updating the DECIP is a little more complicated.  processors. Thus, a simulated 256-node Meerkat has a slow-down

A branch instruction to a target that is on the same page as of 27,000 - 37,000 to one. Because our host is about four times
the branch itself is calledn-page and is translated to a decoded faster than the Meerkat processor, however, the ratio between wall-
form that contains a pointer to the decoded form of the target of the clock time and simulated time is not this large. For example, a 32k
branch. On-page branches are fast: they need only to dereference=FT simulation runs for 850,000 cycles, or 42 milliseconds. This
a pointer. Off-page branches are not as efficient, as the decodedakes six minutes of SPARC-10 time, which means that the ratio of
target pointer must be resolved during execution. SPARC-10 time to Meerkat time is 8,600 to 1.

The execution-time translation of an instruction address into
a decoded instruction pointer is necessary because the instruction6 Timi .

. . iming Models and Simulator Accuracy
translator makes no assumptions about the contents or allocation of
other decoded instruction pages. That is, the only pointers to the
decoded instructions within a given page are contained in that same
page. Talismandoes not allow cross-page pointers because decode
instruction pages correspondto physical pages while branch seman-
tics are defined in terms of virtual addresses. The correspondence L.
between virtual target instruction addresses and decoded instruction®-1 = Timing Model Development
slots is dynamic, i.e., it can change after threaded code is generatedg - method of timing model development was to iteratively:
and there can be multiple virtual mappings of a single physical page.
By resolving cross-page branches dynamically, these semanticsare 1. Measure the difference between execution times of a mod-

preserved. ) i erate or complex benchmark program on Talisman and the
Delayed branches increment both the DECIP and the IP, just prototype.

as non-branching instructions do. In addition, they set a flag if the
delayed branch is taken (i.e., the branch condition is true). Non- 2. Identify which aspect of the prototype’s timing was most
branching instruction handlers check this flag, which, when true, responsible for the difference.
indicates that the previous instruction was a taken delayed branch. ) ) .
In this case control is passedto the target of the delayed branch after  3- Write a low-level test that is more sensitive than the bench-
the non-branching handler finishes its semantic actions. Branching mark to the aspect identified in Step 2.
instructions need not verify that they are not in a branch delay 4
slot, because the MC88100 specification prohibits control-transfer
instructions from being in delay slots.

Jump instructions transfer control to locations whose targets 5. Add a timing model to Talisman that captures behavior iden-

4.11 Modelling Control Transfer Instructions

We used a suite of tests both to guide development of timing models
nd to evaluate Talisman'’s overall accuracy. This section addresses
ese two issues.

. Verify that the low-level test shows a significant performance
difference between Talisman and the prototype.

come from a r_egiste_r and are _thus not known until execution. For tified in Step 2. The new timing model often has parameters
this reason, a jump is treated like an off-page branch. Its execution that the user can adjust. Pick default values for these param-
requires translating a virtual target code address into a pointer to a eters.

decoded instruction pointer.

A small cache of translations from target virtual instruction 6. Rerun the low-level test to verify that the new timing model
addresses to decoded instruction pointers speeds the interpretation ~ makes Talisman accurate on the low-level test. This may
of jump and off-page branch instructions. This cache is flushed require adjusting the model's parameters. If not, examine the
whenever the virtual-to-physical address mapping changes. test and Talisman on a cycle-by-cycle level. Fix the model.

5The host workstation uses a Super-SPARC processor clocked at 36 MHz, and has
5 Talisman’s Performance a SPECInt92 rating of 45.2.

Talisman’s performance is a function of workload and the processor



7. Rerun the higher-level benchmark to see if the aspect iden- operations, because we were not interested in the performance of
tified in Step 2 was correct. If not, repeat. If so, check the programs that used multiple processors per node. We changed the

accuracy of Talisman on another benchmark test. run-time system to use processor 0 for everything. This improved
) ) the performance of the prototype on small messages and brought
8. Stop when Talisman is accurate for all the tests. the simulator and prototype execution times in line.
Some programs have different execution results on the simulator
6.2 Timing Accuracy Tests and the prototype: there are aspects of the prototype’s timing that

we could not - or did not want to - model. We did not model the
. - . . . timing of operations that we believed would not affect the outcome
ing point and memory access instructions. The times reported are ot ;- measurements and were difficult to model. For example, the
in microseconds and are an average of the time to execute a sin-not6type runs a debugging monitor that mediates between the cross
gle iteration c_)f t_he loop containing the ".‘easur?d instruction. The debugger running on the Sparcstation host and the running Meerkat
largest error is in the ro_atl_ng point add instruction test. Talisman program. This monitor: (1) lets the cross debugger control the
overstates the cost of this instruction by one cycle, or 50 Nanosec-ynning Meerkat program, and (2) fields requests from the Meerkat
onds: Talisman does not model contention for the single write-port ,qram for operating system services performed on the host. The
of the MC88100's register file. The MC88100 is capable of writing  semantic effect of the monitor is modelled in the simulator, but
one word per cycle to its register file. Talisman makes a pessimistic o jts timing or its effect on instruction and data caches. The
guess as to whether contention will occur. In the case of the floating time it takes the prototype to perform operating system services
point add below, this guess is incorrect. We considered adding a js 5 function of the load on the Sparcstation host, the relationship
timing model to correct this, but decided that the increased accu- pepyeen the time of the request and the host's process interval timer,
racy would not compensate for the effort, _S|mulator performance 5nq other factors.
degradation, and added 5|_mulator comp_lexny. To enable accurate measurements, we were careful to measure
Uncached read and write tests exercise the DRAM system. Tal- v the execution time of sections of code that do no 1/0 through the

isman models interference with DRAM refresh, which consumes i qnitor and whose initial cache state is not dependent on previous
about two percent of the memory system's bandwidth. DRAM o5 tg the monitor. In practice, we found this easy to do, and

refresh is rarely modelled in system simulations, because it is con- usually meant avoidingrintf's until after a measurement was
sidered such a small factor. Note, however, that if Talisman did not (5.

model refresh, the errors would be several times larger. Many of
the errors are below one percent. These errors may be due to slight . . .
timing differences between the hardware and Talisman. These dif- ©-4 Validity of Large-System Simulations

ferences can cause Talisman to model one more, or one less, refreskrne hardware prototype has four nodes, but we use Talisman to
cycle than occurs on the hardware. In fact, the hardware measure-gg|yate systems with up to 256 nodes. We cannot directly verify
ments show variation from run to run of about one percent. the simulator’s accuracy with systems with more than four nodes,
Table 2 shows the results of more complex operations. These 55 we do with systems with four or fewer nodes. However, we
include various cache operations, synchronization instructions, and have good reason to believe that the large-system simulations are
sequences that load the local memory bus. The largest error iscorrect. First, we know that Talisman accurately models the nodes
shown in the “copyback full line” test, where Talisman understates of these large systems. Second, the interconnect model is fairly
the time for a copyback of a cache line by a little over one clock getailed and keeps track of each node’s use of the interconnect
cycle. o . onacycle basis. The combination of accurate node models and a
We ran several parallel applications on four-node real and sim- getajled interconnect model should yield an accurate system model.
ulated Meerkat's. Table 3 shows the cgrrespondence of Talisman Thjrg, even the four-node system running several of the benchmarks
and hardware results for a global combine, SOR, and FFT (see [2] |isted in Table 3 saturate the interconnect at times. If there were
for a description of these codes). The largest error is 7.8% on a gryors in the model, one would expect to see a significant difference
32-byte global combine. ) between the benchmark running times reported by the hardware and
_Errors on the complex tests are larger than on the simple tests. Tajisman. The lack of significant differences, the low-level of detail
This is a product of our method for achieving timing accuracy. The \ith which we model the interconnect, and the high accuracy on

simple tests were created to test modeling features of the simulator,g || systems gives us good confidence that Talisman is accurate
so naturally the simulator performs well on them. The complex  for jarge systems.

tests, on the hand, were chosen to gauge the overall accuracy of
the simulator. If we kept going with our methodology, we would ]
identify the root of the difference on the 32-byte global combine, 7 Debugging Features
write a simple test to exercise this difference, add a model to bring
the simulator closer to the hardware, etc.

Table 1 shows the results of low-level tests of individual float-

There are a number of benefits of using simulators over hardware,
e.g., adaptability, deterministic execution, low cost. In addition to
. the benefits that most simulators provide, Talisman has a number
6.3 Measurement Experience of features that gave insight into Meerkat behavior and aided in

In some cases we changed our run-time system to make the sim-Program development:
ulated and prototype execution times closer. For example, we ini-
tially used processor 1 on every node to processinternode interrupts,
while processor 0 did everything els®©n a message-exchange test,
the simulator reported half the execution time of the hardware: after
processing interrupts, processor 1 had dirty cache state that had to
be flushed to memory and then reloaded by processor 0. The simu-
lator did not model the MC88200’s snooping and associated cache

¢ Unlike the hardware, Talisman allows single-stepping and
breakpointing of exception handlers. Large portions of the
message-passing system execute as an exception handler,
making it much easier to debug this code in the simulation
environment.

e Talisman has a precise memory breakpoint feature that stops
"The Meerkat hardware has four processors per node. All of the tests used in this _executlon of all proces_sors the '_nStant the WatChe_d Iocatlo_n
paper ran with one processor per node enabled. is accessed. This precise stopping of execution aids certain




Test name Hardware Talisman Difference
(p-seconds) | (u-seconds) | p-seconds [ Percent |
loop with no mem activ 0.301 0.301 0.000 0.0
FP add 0.704 0.754 0.050 6.6
FP multiply 0.857 0.855 -0.002 -0.2
FP divide 3.404 3.404 0.000 0.0
FP mem add/multiply 1.711 1.710 -0.001 -0.1
cache read hit 0.501 0.501 0.000 0.0
double cache read hit 0.551 0.551 0.000 0.0
cache write hit 0.350 0.351 0.001 0.3
double cache write hit 0.401 0.401 0.000 0.0
uncached read 0.867 0.862 -0.005 -0.6
double uncached read 1.336 1.323 -0.013 -1.0
uncached write 0.360 0.357 -0.003 -0.8
double uncached write 0.718 0.714 -0.004 -0.6
1/0 read 0.851 0.851 0.000 0.0
1/0 write 0.452 0.449 -0.003 -0.7
CMMU control page read 0.701 0.701 0.000 0.0
CMMU control page write 0.301 0.301 0.000 0.0
Table 1: Low-Level Talisman Accuracy Test Results
Test name Hardware Talisman Difference
(u-seconds) | (u-seconds) | u-seconds | Percent |
cache read misses 1.074 1.079 0.005 0.5
double cache read misses 1.132 1.125 -0.007 -0.6
cache write misses 0.926 0.927 0.001 0.1
double cache write misses 0.975 0.977 0.002 0.2
full write pipeline 0.923 0.931 0.008 0.9
instruction cache line fill 0.782 0.781 -0.001 -0.1
copy uncachedto cached 0.938 0.936 -0.002 -0.2
exchange memory instruction 0.971 0.974 0.003 0.3
bus contention 3 reads 1.381 1.391 0.010 0.7
write back on write miss 1.286 1.291 0.005 0.4
write back on read miss 1.427 1.430 0.003 0.2
invalidate empty cache line 0.502 0.505 0.003 0.6
copyback full cacheline 0.925 0.860 -0.065 -7.6
invalidate empty page 15.868 15.784 -0.084 -0.5
copyback half full page 75.060 75.008 -0.052 -0.1
copyback full page 134.224 134.252 0.028 0.0
copyback empty data cache 54.800 54.640 -0.160 -0.3
copyback full data cache 528.800 530.360 1.560 0.3
copyback+invalid whole cache ~ 529.800 530.720 0.920 0.2

Table 2: Medium-Level Talisman Accuracy Test Results (Uniprocessor)




Test name Hardware Talisman Difference
(u-seconds) | (u-seconds) | u-seconds | Percent |

Global Sync Average 94.558 90.142 -4.416 -4.9
Global Combine 8 bytes 130.200 127.400 -2.800 2.2
Global Combine 16 bytes 94.400 95.800 1.400 15
Global Combine 32 bytes 97.400 105.600 8.200 7.8
Global Combine 64 bytes 128.200 124.000 -4.200 -3.4
Global Combine 128 bytes 160.000 150.200 -9.800 -6.5
Global Combine 256 bytes 226.200 224.200 -2.000 -0.9
Global Combine 512 bytes 381.600 368.800 -12.800 -3.5
Global Combine 1024 bytes 635.800 614.400 -21.400 -3.5
Global Combine 2048 bytes 887.000 885.400 -1.600 -0.2
Global Combine 4096 bytes| 1697.800 1698.000 0.200 0.0
Global Combine 8192 bytes| 3323.600 3498.000| 174.400 5.0
Global Combine 16384 bytes  8292.200 8234.400 -57.800 -0.7
Global Combine 32768 bytes 15671.200] 15223.200| -448.000 -2.9
R/B SOR 32x32 30252.000] 29379.000( -873.000 -3.0
R/B SOR 32x32 59248.800] 58650.600| -598.200 -1.0
FFT 16 points 2266.200 2300.200 34.000 15
FFT 512 points 5152.000| 4883.800| -268.200 -5.5
FFT 1024 points 10136.000] 9658.400( -477.600 -4.9
FFT 2048 points 21088.600/ 19987.600| -1101.000 -5.5
FFT 4096 points 46496.400| 43895.000] -2601.400 -5.9

Table 3: High-Level Talisman Accuracy Test Results (4-Node)

debugging problems tremendously. Building as precise a only those functional models that substantially affected accuracy,

breakpoint into the prototype would require redesigning the the degradation was less than an order of magnitude.

processor. Talisman executes about 100 host instructions per simulated in-

) . - . . _ struction. Thisis much faster than other timing-accurate simulators.

e Talisman compiles conditional breakpoint expressions into The high performance allows users to model multicomputers with

target machlne cod_e (see [2] for details) to speed _condltlonal hundreds of processors running substantial programs.

breakpoint evaluation by several orders of magnitude. The A nymber of performance monitors and animation features give

user can thus make liberal use of conditional breakpoints the yser a comprehensive view of the simulated system. These

without having to wait long periods for frequently-false con-  features were easy to add to Talisman, but would be difficult or

ditions to be evaluated. impossible to add to the prototype. They are nonintrusive, i.e., their
x Presence does not affect the execution behavior of the simulated
system.

We showed the results of running a suite of tests on both the
Meerkat prototype and Talisman. These tests show that Talisman
is a faithful model of the prototype, usually differing from the
prototype by only a few percent.

¢ Talisman optionally animates internode bus activity in one
window and displays an internode bus contention histogram
in another. Both of these displays gave valuable insight into
system behavior, were easy to add to Talisman, and would be
difficult to implement in a hardware prototype.

8  Summary 9 Acknowledgements
Simulators vary widely in their application, structure, accuracy, and
performance. We outlined several simulator applications and the
simulators typically used. Talisman is unique in its combination of
speed, efficient use of memory, fine modelling detail, portability,
user/supervisor modelling, and modelling of address translation.
With this combination of features we were able to model large
systems at a fine level of detail and make accurate predictions about
the performance of large systems.

We described Talisman after placing it in the context of a range
of simulation strategies. Talisman can execute instructions quickly,
yet models timing accurately, and can efficiently multiplex amongst
many simulated processors.

Talisman’s construction began with a fast threaded-code inter-
preter and a translator to generate threaded-code from machineReferences
instructions. To make Talisman usable, we chose a powerful sym-
bolic debugger for the front end. We achieved timing accuracy by
carefully adding functional models to the behavioral simulator base.
These functional models slowed Talisman, but because we added
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