
R94:16 ISSN 1100-3154

Some Efficient Techniques for
Simulating Memory

Peter Magnusson Bengt Werner
psm@sics.se werner@sics.se

September 1994

Parallel Computer Systems
Swedish Institute of Computer Science

Box 1263, S-164 28 KISTA
SWEDEN

Abstract:
We describe novel techniques used for efficient simulation of memory in SIMICS, an
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performance of interpreted memory operations by reducing the number of calls to
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of the simulator process. A well-defined internal interface to generic memory simulation
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Abstract

We describe novel techniques used for efficient simulation of memory in SIMICS, an instruction
level simulator developed at SICS. The design has focused on efficiently supporting the simulation
of multiprocessors, analyzing complex memory hierarchies and running large binaries with a
mixture of system-level and user-level code.

A software caching mechanism (the Simulator Translation Cache, STC) improves the performance
of interpreted memory operations by reducing the number of calls to complex memory simulation
code. A lazy memory allocation scheme reduces the size of the simulator process. A well-defined
internal interface to generic memory simulation simplifies user extensions. Leveraging on a
flexible interpreter based on threaded code allows runtime selection of statistics gathering, memory
profiling, and cache simulation with low overhead.

The result is a memory simulation that supports a range of features for use in computer architecture
research, program profiling, and debugging.
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memory hierarchy, cache simulation

1. Introduction
Computer architectures are developed to allow high-performance implementations. There is a trove
of statistics available to guide computer architects when they are deciding what to optimize. Sets of
programs such as the SPECint92 and Splash are common points of reference, and many believe
them to be representative of user workloads.

A representative program needs to be analyzed to understand what optimizations in an underlying
architecture are globally applicable. If a program is non-representative, we need to determine this,
and furthermore to decide whether to modify the program or specialize the hardware. In either case,
there is a need for tools to analyze program behavior and the interaction of programs with the
underlying architecture.

Traditional use of simulation as an instrument has often suffered from the consequences of poor
simulator design. If the simulator is slow or has a large memory overhead, then only small
programs (“toy benchmarks”) can be studied. If the simulator fails to simulate system level effects,
the resulting statistics will be non representative of real workloads. Among the more important
system level effects that are often omitted are those caused by page faults, interrupt-driven I/O,
cache interference, and multiprogramming. The common reason for their omission is that they are
difficult to support, especially in fast simulation techniques such as variations of direct execution.
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We believe that once these design difficulties are dealt with, the resulting simulator will be both
efficient and multi-purpose:

• computer architecture investigations; a common domain for simulators, the purpose
here is to understand the frequency and character of hardware events triggered by
software,

• program profiling; traditional techniques of detailed program behavior analysis are
too invasive or inflexible for complex systems, such as real-time operating system
kernels with extensive interaction among server components,

• debugging; simulators allow the debugging of code that is otherwise difficult to deal
with, such as system-level; furthermore, the unchallenged control over execution that
a simulator can deliver offers the opportunity for new approaches to program
debugging.

SIMICS is an instruction-level simulator developed at SICS that can play all the above roles. Our
goals with SIMICS include:

• performance; an efficient simulator, both in execution speed and memory
requirements, allows for large programs, large working sets, and long execution runs,

• language independence; we do not want to be restricted to any particular target
program implementation language, compiler, library, or even require source code for
the programs,

• system level; the simulator must simulate some form of system binaries to allow
studies of the interaction of operating system, user program, and architecture,

• interaction; we wanted a simulator that supported debugging primitives so that we
could use symbolic debuggers such as GDB1 or Xray2 as a front end,

• determinism; the execution of the simulator must be completely deterministic, to allow
repeats of both statistics gathering and debugging,

• memory simulation; we need ways to study multiprocessor memory hierarchies
without excessive simulator performance loss,3

• portability; a simulator should be portable to allow quick adaptation to new host
platforms,

• multiprocessor; we wish to efficiently simulate multiple processors, including
pertinent multiprocessor features such as inter-processor interrupts, message passing,
or external TLB invalidations,

• statistics; we will need to extend the simulator to gather pertinent architecture and/or
program statistics, such as memory usage, frequency of important events, or
instruction profiling,

• low startup cost; the simulator should start quickly to speed the “edit-compile-
simulate” cycle—complex initializations should be kept to a minimum,

• low turnaround; we wish the simulator to be structured (internally) such that it can
quickly be modified or extended without requiring excessive portions of it to be re-
compiled,

• extendibility; a user of the simulator should be able to develop their own extensions
with minimal understanding of the core of the simulator,

All the above goals set constraints on the simulation of memory. To meet them, we have developed
a combination of techniques that we mix and match within SIMICS. By designing SIMICS in an
object-oriented manner, we can isolate the complexities in well-defined modules.4 This has allowed
us to write a single simulator that:

• supports memory management unit semantics,
• simulates single or multiprocessor,

1The Gnu DeBugger, from the Free Software Foundation.
2A symbolic debugger from MRI.
3A memory hierarchy is a hiearchy of caches, possibly using different coherency schemes. In evaluating
multiprocessor memory systems, it is often of interest to look at the frequency of different coherency
protocol transactions.
4SIMICS is written in C. We isolate all data relating to an object in a single structure. Generally, only
functions in a single C file can manipulate the object. To avoid offending the purists, we will hereafter refer
to this as a modular design.
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• simulates cache, including linking with memory hierarchy simulator written by user,
• deals correctly with supervisor and user addresses, handling page faults etc.,
• supports shared physical address space (e.g. bus-based multiprocessor), distributed

(e.g. message-passing architecture), or hybrids,
• profiles memory usage (working set),
• is fast and with low memory overhead.

Thanks greatly to the modularized design, all the features in this list can be selected interactively.
Thus, SIMICS can simulate a four-processor architecture with a shared memory bus and 64K
direct-mapped first level cache, or a 16-processor distributed memory architecture with message
passing devices mapped into supervisor address space and 8K two-way associative cache, without
recompiling. The performance impact of this flexibility is minimal compared to a specialized
design.

The design of these features is the topic of this paper.

2. Overview of this Paper
In section 3 we give a brief overview of the internal structure of SIMICS as background infor-���������	��
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memory in a system-level simulator.5 Section 5 defines some important terms, and gives a short
overview of the principal components of memory simulation in SIMICS. Sections 6-16 dig into the
details of the implementation. This is followed by some performance figures in section 17 before
the summary and conclusions.
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a memory hierarchy interface is, and the latter detailing a sample implementation. Sections 14, 15,
and 16, finally, briefly discuss some peripheral aspects and alternatives.

If you wish a casual reading of the most important ideas in this paper, you should focus on sections
4, 5, 10 and 12.

3. Internal Structure of SIMICS
In this section we give a brief description of the overall structure of SIMICS. Figure 1 shows the
principal objects of the simulator. Generic data structures exist for nodes, processors, and devices.
The machine model is that of one or more nodes, each with one or more processors. Devices are
unique to a node, and are memory-mapped. The processor and node objects are on linked lists. All
nodes of the machine are on a single list, while the processors are on multiple lists: node list (null-
terminated list of processors on a node), machine list (all processors), and a scheduling list (for
round-robin scheduling to simulate concurrency).

5We use the term system-level simulator to mean a simulator that deals with system-level aspects of
architectures and multiprograming systems, such as protection domains, virtual memory, memory-mapped
devices, interrupts, exception handling, paging, inter-processor communication, etc.
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Figure 1: Principal SIMICS data structures

The program code for SIMICS is structured with separate file pairs (c file and header file) that
cleanly delineate responsibility:

• machine.[ch] describes general architecture dependencies, such as where RAM is
located, the generic device table (will return to this), minimum and maximum number
of processors and nodes.

• local-processor.[ch] describes non-generic processor attributes, such as number of
registers, functions for manipulating generic processor state such as interrupt
enable/disable, and functions for accessing MMU.

• various device files, e.g. SCSI.[ch], SCC.[ch], etc. Each device type needs to define
initialization routines. Thus, when a node is created (at run-time), the generic device
table is copied and the listed initializers called. Generic device functions and data
structures are kept in device.[ch].

• node.[ch] data structures and functions for nodes. A node contains one or more
processors, physical memory, and a set of memory-mapped devices.

• processor.[ch] contains information that is common to any processor type, including
data structures to support threaded code.

• memory.[ch] implements generic memory simulation code.
• memory-hier.[ch] implements specific memory simulation code, i.e. a particular

memory hierarchy.

All objects are allocated dynamically. The user can interactively set number of processors and
nodes, and re-initialize. Global functions such as for_all_processors(), for_all_memory_pages(),
and for_all_nodes() are used to apply a function to multiple objects.

The only limitation on the number of processors, nodes, size of application binary, or size of
simulated memory is the available virtual address space that the host can comfortably support.

4. Simulating Memory
To support system-level simulation, we need to faithfully simulate virtual memory. This includes
virtual to physical translation, checking access rights, and simulating TLB6. Correct TLB contents
are required to simulate the interleaving of user and system code due to page faults in the case of
software-loaded TLBs, and to generate correct memory accesses for table walks in the case of

6Translation look-aside buffer, sometimes called the address translation cache.
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hardware-loaded TLBs. The memory simulation must be efficient, since on the order of every
fourth instruction in typical RISC code is a memory access.7

Specifically, for every memory access, we need to do the following:

1 calculate the effective address,
2 translate from a virtual address to a physical,
3 check for TLB misses,
4 check protection,
5 check for alignment violation,
6 perform the read/write operation, and
7 update processor state.

Table 1: Memory Operation Checklist

Misalignment refers to the inability of some processors to access data block boundaries. For
instance, a word (32 bits) can often only be read from a word-boundary address, i.e., from an
address where the bottom two bits are zero. Some architectures will round (clear) the affected bits
if so desired (m88110), others will always trap (Sparc).8

In addition to the list above, we want to use the simulation of memory to implement watchpoints9,
profile memory usage, and simulate a memory hierarchy. It should therefore be flexible.

Another issue is the accuracy with which we should simulate the memory hierarchy. There are at%,�I���.��
+��(�8%<�1K��1%Y�G��
8�,���1 �1���.�<��"7�1�I�1(�+�1�1@/3j%<�Y�.�<�1�*�,�7�<�1!�%,�Mi/�

1 memory contents (user-level behavior)
2 address trace (system-level behavior)
3 cache contents (off-chip memory accesses)
4 memory timing (performance)

Table 2: Memory Simulation Accuracy

The first level simply maintains a correct memory content from the user-level program perspective.
The second level also simulates contents of TLBs, thus allowing table walks, page faults and
operating system code to occur. The third level simulates first (and second) level cache contents,
thus correctly modelling the address trace coming off the chip. This level allows us to simulate
coherency actions in a shared-memory multi-processor, which may be performed in hardware or
with a combination of hardware and software. The fourth and final level simulates correct latencies
for performing memory transactions.

SIMICS supports the first three levels. We will discuss cache simulation in the next section. The
fourth level is not supported.10 We will discuss cache simulation in the next section.

5. Memory Simulation in SIMICS
We define three terms for different memory spaces. A logical address is an address used by a
program, sometimes called a virtual address. On the target architecture, this address would be
translated by the memory management unit to the physical address, which in turn would be used to
actually look up the data. In a simulator, there is a third level, since the simulator itself exists in a
virtual-physical environment. The simulated physical address needs to be translated to an address
in the simulator’s virtual address space, and this address we call the real address.

7Obviously, every instruction fetch is also a memory access.
8Some architectures expect a division of labor between processor and operating system. As an example, the
Alpha architecture has efficient byte manipulation instructions. If the compiler determines that a memory
access is likely to be misaligned, it can output explicit code. If the compiler thinks that misalignment is
unlikely, it can attempt word (64-bit) access, and if it is misaligned the operating system trap handler will
perform the operation instead. (Smith, Weiss 94)
9A watchpoint is a breakpoint on an address containing data. Execution stops on the instruction that reads or
writes an address that the user has set a watchpoint on.
10It is not clear to us how useful such an extension would be. Memory access delays is only one factor that
affects performance of a processor, examples of others being: lock-up free caches, multiple dispatch, out-of-
order execution, write buffers, speculative branch prediction, and register file bottlenecks. Simulating one
without the others would yield a meaningless statistic.
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Figure 2: Memory Simulation in SIMICS

Figure 2 shows the principal components of memory simulation in SIMICS. The interpreter
executes the individual instructions. If the instruction is a memory operation, the interpreter
attempts a translation using the simulator translation cache, STC (1). If successful, the STC will
return the corresponding real address (2). If STC fails, the interpreter delegates to the memory
simulator (3). This module will first do a correct logical to physical translation via the full state of
the MMU (4). Next, the physical memory module will translate the physical address to a real
address, allocating new space if necessary. With the logical, physical, and real addresses of an
operation the memory module updates the STC (6). Thus, the next time this page is accessed the
STC will succeed in step (1).

6. Memory Transactions
To simplify communication between the memory simulation modules, we have defined a generic
memory transaction data type:

typedef struct memory_transaction {
uint32 physical_address;
uint32 logical_address;
uint32 real_address;
processor_t * processor_ptr;
read_or_write_t read_or_write;
processor_mode_tmode;
data_or_instr_t data_or_instr;
unsigned snoop_bit:1;
unsigned cache_bit:1;
unsigned writethrough_bit:1;

} memory_transaction_t;

Any transaction that misses the STC causes a memory transaction object to be allocated. Only a
single pointer is then passed between the modules until the operation is resolved. Not all
information is valid at any given time—functions read and write to the structure as they see fit. For
example, the MMU is expected to fill in the snoop, cache, and write-through so that the cache
simulation code can determine whether cache is enabled for this particular memory operation.  This
has to be programed carefully, since there is no simple way to assert that data in the structure is
valid. The advantage is design simplicity and efficiency.11

7. Intermediate Code Support
The core of SIMICS is based on threaded code techniques (Bell 73). We translate target object
code to an internal format, the details of which are beyond the scope of this paper. This
intermediate format is then interpreted. This translation need not be 1:1, and we use this to allow
the memory simulation features described in this paper to be chosen interactively. With regards to
memory simulation, there are separate sets of intermediate codes to support four cases: normal,
minimal statistics, memory profiling, and cache simulation.

The normal mode is optimized for speed, thus simulating only the functional correctness of the
execution.12 The minimal statistics mode counts memory accesses according to user or supervisor
space, and read or write. Memory profiling and cache simulation are described in more detail
further on.

11Procedure calls are generally faster since we reduce the number of unnecessary push/pop operations on the
stack. It also simplifies debugging.
12This includes correct MMU simulation.
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This structure allows a single simulator binary to support all the features described in this paper.
Furthermore, the individual features can be toggled during execution—the necessary internal data
structure is allocated/deallocated as necessary, the execution state is unaffected.13

8. Memory Management Unit
The MMU module is well isolated from the other memory simulation components. The MMU
needs to provide a routine—mmu_logical_to_physical()—to report on legal translations.
Conversely, the MMU simulation code can call a routine to clear address intervals that are cached
elsewhere. Depending on the circumstances, a call to mmu_logical_to_physical() may or may not
be an actual TLB miss. This design allows new MMU designs to be implemented with only a
cursory understanding of the rest of the simulator. The MMU simulation code need not be
excessively efficient.

SIMICS simulates the m88110 MMU and a 1:1 translation for direct execution of user binaries.
The m88110 MMU is programmed using control registers, which are special instructions on the
88k. New MMU modules are easy to add.

9. Physical Memory
The physical memory is simulated using a separate module that allocates space on a page-size basis
upon the first memory access to that page. It supports sparse memory usage anywhere in the
physical address space.14 Figure 1 shows that it is associated with a node. Multiple processors on a
single node always share the same address space. When simulating a shared memory address space,
the same data structures are used by all nodes. When simulating a distributed memory architecture,
the memory is allocated separately. A single pointer associates a node with the (hierarchical)
memory data structure. Thus, the decision by the user to simulate a shared memory or a distributed
memory architecture can be decided interactively.

Physical address space is seldom 32-bit. Therefore, the machine description file can define a macro
FIX_ADDRESS() that is applied to all physical addresses. For example, the top bits are often
ignored.

10. Simulator Translation Cache (STC)
The STC caches legitimate translations for quick access. Thus it contains a subset of the TLB
entries. The STC translates directly from logical address to real address. Whenever there is a miss
in the STC, it calls the mmu_logical_to_physical() routine described earlier. The MMU simulation
code can, in turn, call the mem_add_to_STC() routine to tell the STC module to enable a particular
translation. The intent is that any future accesses to this logical page should hit the STC. The STC
code is complex and intimately tied to the simulator core, but this is hidden from the MMU
simulation code. STC entries can likewise be invalidated by the MMU module.

For each processor, there are six separate STCs for each combination of read, write, or execute
with supervisor or user.

The principal STC data structure and translation scheme are illustrated in figure 3. The input is a
logical address provided by the instruction interpreter. The bottom bits of the page number (bits 12-
20) are the index into a hash table. The tag is formed by the whole page number, in this case the top
20 bits. The bottom 12 bits of the tag are zero. The bottom (s+1) bits of the logical address being
translated are not cleared, where s is the log base 2 of the size of the memory operation. Thus, a tag
comparison failure means either a translation miss or a misalignment. Finally, the value actually
stored is the difference between the real and logical address. The real address can be formed by
adding the logical address to this value.15

13If this is done for cache simulation, the caches will be cold-started and will not yield correct statistics until
they have been warmed up.
14Currently SIMICS supports at most 32-bit physical address spaces.
15This works due to the following observation: let P be the starting address of the simulated logical page
containing the logical address Q to be translated. Let RP be the starting address in the host address space (real
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Figure 3.: Simulator Translation Cache (STC)

Note the rather large 512-entry hash table. Since the simulated TLB is generally fully associative or
has a high associativity, we need a large direct-mapped STC to give comparable performance. The
STC does not need to handle misses, so there is no alternate linked-list structure.

This design handles items 2-6 in Table 1.

The compiled code generates seven Sparc assembler instructions. These seven instructions
calculate the hash index, fetch the hash table entry, check the tag value, check for misalignment,
calculate the real address, and perform the load.

The C code used for implementing this design uses a single macro: MEMORY_OPERATION(DST, SRC,
TYPECAST, MEM_OP_TYPE, SIZE). DST evaluates to an Lvalue to store the result in the case of loads,
and the value to be written in the case of stores. SRC evaluates to the effective address. TYPECAST is
the conversion to be applied (read signed byte, for instance). MEM_OP_TYPE identifies the type of
operation: load, store, swap, etc. SIZE is the number of bytes of the operation. The same macro is
used by all memory instructions in both the Sparc and m88110 simulation code.

11. Simulating a Data Cache
We want to simulate the cache contents to gather performance statistics, and to support the
simulation of memory hierarchies. Naturally, as soon as caches are simulated they need to be
involved in every memory operation.

Fortunately, cache line lookup and TLB lookups are often done in parallel on real hardware. To
allow this, the lower bits (those typically used for cache lookup) remain the same after the logical
address has been translated to a physical one. We can therefore extend the STC to support cache
lines, thus performing a cache and TLB lookup in one operation.

Interpreter STC

memory physical memory

MMU

location in memory

1

3
2

4

5
6

memory hierarchy7

Figure 4: Cache Simulation in SIMICS

Figure 4 illustrates memory simulation when cache simulation is enabled. The algorithm is
analogous to figure 2, except that the memory module does not update the STC directly. Instead, a
failed STC look-up is ultimately passed on to the memory hierarchy module (6). The memory
hierarchy module simulates the cache in whatever manner it sees fit, gathers statistics, etc. Finally,
the memory hierarchy module can update the STC. We return to the memory hierarchy in the next
section.

address) of the corresponding page. Then (RP – P ) + Q = RQ, where RQ is the real address of Q. We
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The enhanced STC scheme for cache simulation is almost identical to figure 3. We do the lookup
as if the cache was a direct-mapped, 4k cache with 16-byte cache lines.16 The hash table is 256
entries, and the hash index is formed by bits 4-11 of the logical address.

We need to check the logical address and the alignment, as in the previous section. Note how this
does not restrict the memory hierarchy to a particular first-level cache size or organization, because
cache lines are only added to this STC if told to by the memory hierarchy code.17 Note also that
cache lines should only be placed in this STC if accesses to them do not affect any cache
simulation state. For example, if the replacement scheme of the simulated cache is LRU, then only
MRU lines can be put in the STC.18 If the replacement is random, then any line can be in the STC.

SIMICS will not track STC hits other than to count them (supervisor read hits, supervisor write
hits, user read hits, user write hits).

12. Memory Hierarchy Interface
A particular memory hierarchy module is used to implement whatever functionality an investigator
needs in order to analyze a program’s behavior with respect to memory operations. We have
defined an internal interface (API) for writing problem-specific memory hierarchies to isolate the
internals of SIMICS from the implementation of new memory hierarchies. In this section, we
describe this interface.

The user code needs to implement four routines; user_mem_possible_cache_miss(), user_mem_-
flush_cache(), user_mem_alloc_pp(), and user_mem_alloc_cpu().

user_mem_possible_cache_miss() is the most important routine. It is called whenever the STC
misses. It is passed a memory transaction that already contains all relevant information, including
logical, physical, and real addresses, and information from the MMU including cache valid bit. It is
up to the memory hierarchy module to update cache state and keep track of relevant statistics. In
order to reduce the number of unnecessary calls to this routine, the memory hierarchy module can
filter out cache line accesses by calling mem_add_to_STC(). This will cause the STC to try to
handle future accesses to the specified cache line directly. STC contents can be invalidated by
calling mem_flush_STC().

user_mem_flush_cache() is called by the MMU simulator to tell the memory hierarchy that a
particular processor has asked to flush its cache (or portions thereof).

One of the difficulties with memory hierarchy simulation is the allocation of suitable data
structures for different machine configurations. Therefore, we have written much of this code into
the simulator core and it does not have to be re-implemented with every new memory hierarchy.
Whenever a physical memory page or processor is allocated, the user memory hierarchy code is
called to obtain a pointer to a suitable data structure. user_mem_alloc_pp() and user_mem_-
alloc_cpu() are used to dynamically allocate a suitable amount of data during simulation. The
memory hierarchy simulator has to decide what structures are related to the number of processors,
and what structures are related to the amount of memory that is being used. This is exemplified in
the next section.

13. A Simple Memory Hierarchy Module
In this section we describe an example implementation of a memory hierarchy that we are using to
evaluate the cache performance of a proprietary real-time kernel. The module simulates a first level
cache attached to a common memory bus. The first-level cache is direct-mapped, with the number
of sets and associativity selectable at run time. The common memory bus uses a simple MESI
protocol to deal with cache coherency.

Since the STC has dealt with most of the performance issue, our focus here is to keep a low
memory overhead. Specifically, we want the memory overhead to be ordo (M+P), where M is the

calculate (RP – P). This eliminates (at least) a mask instruction during execution.
16We have experimented with different sizes, but the performance improvement is not dramatic for larger
STCs.
17Cache line size must be a multiple of the line size in the STC; 16 in the example.
18LRU = Least Recently Used, MRU = Most Recently Used.
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ammount of physical memory being used by the applicatino (working set) and P is the number of
processors.19

For each processor, we allocate an array of cache line info data structures:

typedef struct cache_line_info {
uint32 physical_address;
processor_t my_cpu;
cache_stat_t state;
struct cache_line_info * next;

} cache_line_info_t;

Whenever there is a possible cache miss on a processor, this array is searched and updated as
required. Also, for every physical page of memory we allocate an array of pointers. Thus,
user_mem_alloc_cpu() returns an initialized array of cache_line_info_t structures, and user_mem_-
alloc_pp() return a zeroed array of pointers. This way, as the number of processors changes (when
the user re-defines the architecture) or the number of physical pages grow (as the working set of the
program grows), we incrementally allocate just enough space to keep track of cache state.

physical_page_info
(0x4050c000)

CPU_1_info

0x4050c3f0
cpu_1
shared
next

CPU_12_info

cpu_12
shared
next

CPU_3_info

0x4050c3f0
cpu_3
shared
next0x4050c3f0

Figure 5: Example Memory Hierarchy Data Structure

The reason we need to allocate an array of pointers for every physical page is to locate the presence
of data in other caches. Consider figure 5. The same data is cached in three processors (in a 16-
processor machine). If another processor gets a cache miss on this line, it can look at the
physical_page_info pointer for the particular page. If it is zero, then no other processors cache the
data. If it is set, then it will be the header of a linked list of cache lines, one for each processor that
has cached the data. If, for example, the processor is attempting a write, it will proceed to
invalidate the entries in the rest of the list, update its statistics to this effect, and point the
physical_page_info pointer for this line to it’s own cache array.

The code is less than 500 lines of C (including comments and declarations). It will adapt
dynamically to any machine configuration, maintain correct state of cache lines, and gather
elementary execution statistics.

14. Memory Profiling
The techniques described so far limit analysis of memory behavior to implementing a memory
hierarchy. For some classes of studies, we may wish to look at every memory access, and then the
overhead of calling through the modules would be high. As described in the section on intermediate
code support, since SIMICS uses an intermediate code for interpretation then the set of inter-
mediate pseudo-instructions can include statistics-specific versions.

To demonstrate this, we implemented memory profiling using a specialized set of memory access
instructions.20 When memory profiling is enabled, old translations of instructions that operate on
memory are discarded. The new ones keep track of which bytes in memory have been written to.
This allows an exact measurement of working set size. Also, since these maps are easily cleared, it

19This precludes simple gathering of several classes of statistics in the current implementation, specifically
those that depend on knowing the history of a cache line.
20Actually, this particular function could easily be implemented as a memory hierarchy.
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allows sections of program execution to be profiled to study the fragmentation of memory accesses
in portions of the program.

Also, the implemented memory profiling can optionally break on uninitialized memory reads
(UMR).21 This allows us to locate the locations in the boot phase of an operating system that might
incorrectly depend on the state of undefined memory.

15. Code Memory
SIMICS obviously needs to deal with instruction memory as well. It supports separate MMUs for
instructions and data, such as used by the 88110. TLB lookups for instruction accesses are less
crucial, however, since they can largely be done implicitly. We use the same technique as g88 in�,�	���c�	�1���	�����W�,�8�.�,�(	�1�,�����8��%,�,�������8� �1��(����,K	�1%,@W���W!�%�����_/���	
 %���"	�,����%c�	�1"	��� a � �1�	�,������_ T	]�b�� ) �	�Y���?�1���8�
that instruction TLB lookup is only required when branching between pages, which in our
measurements are several orders of magnitude less common then branches on pages.

Furthermore, when instructions are decoded we distinguish between on-page branches and off-page
branches (whenever we can do so statically). On-page branches require no TLB lookup, and thus
execute faster.

We do not currently simulate instruction caches, though the same techniques used in mg88 could!��M�1����%,�<�1�����,�/�.�<+(��1�<�,���/�G�1+�M����%,@*���1�1�����1�*AN���1�7�<���1@7�1 �=�<�7�<���=�I�1�1��� a � �1���,�1���I_7T���b-�

16. Multiprocessor Considerations
SIMICS simulates the concurrency of multiprocessors by round-robin scheduling the processors.
Each processor is simulated for a fixed time-slice (determined by the user) before switching. This
switch must be efficient, or the user will be limited to using long switching intervals. The STC
implementation described above requires only two pointers to be allocated in registers during
interpretation (since they are used on every memory access). They need to be re-read from memory
upon every processor switch. This is the only overhead that the memory simulation directly
contributes to multiprocessor simulation.

17. Performance Figures
The actual performance of SIMICS with the memory simulation features described in this paper is
difficult to quantify in any systematic manner. The simplest measurement of simulator performance
in general is the number of instructions interpreted per second (measured in thousands, or kips).
However, this number will vary greatly depending on the application and what features are
enabled.

Table 3 lists three examples that illustrate the performance.22 For each, we compare the
performance loss of activating data cache simulation with another useful feature in SIMICS,
instruction profiling. Instruction profiling counts exactly how many times an instruction in a
particular memory location was successfully executed.23 We also indicate the combined effects.

The first example runs a simple Sparc SunOS 4.1 user program, the infamous Dhrystone 2.1!	�1�	�1�	�?�1+_ a�� �1�,��_���NRj�	b-�HB+�O�,�	�7�?�1���.(	+�1���1�	�Y3H�,�>+(	�/�[\j]	] ]�]	]'�,�,��+���,�,���8�43HA��	�,���'+��L�(	�,+���0�1�	�	+��d -
imately 50 million instructions. The cache performance is here excellent (0.001% miss rate), so the
STC performs admirably. Accurate data cache contents are maintained at a 2% performance loss.
The second example runs a much larger Sparc program from the SPECint92 suite, which requires
1.25 billion instructions to complete. The data cache behavior is worse (a realistic working set), and

21We have borrowed the term UMR from the commercial product Purify which has a similar function.
22The measurements were done on a Sun SC2000.
23In system-level simulation this is more complex than just measuring entries into basic blocks, for several
reasons; a basic block may be interrupted by an exception and not re-entered, the program may generate code
at runtime (such as trap vectors), etc.
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the memory hierarchy simulation code is thus called more often. Despite this, SIMICS actually
runs faster with cache simulation enabled.24

Dhrystone 2.1 No Data Cache Data Cache
No Instruction
Profiling

2160 (0%) 2117 (-2%)

Instruction
Profiling

1824 (-16%) 1827 (-15%)

023.eqntott No Data Cache Data Cache
No Instruction
Profiling

1717 (0%) 1864 (+9%)

Instruction
Profiling

1564 (-9%) 1640 (-4%)

rt kernel (88k) No Data Cache Data Cache
No Instruction
Profiling

496 (0%) 478 (-4%)

Instruction
Profiling

438 (-12%) 439 (-11%)

Table 3: Examples of Memory Hierarchy Performance

Our third example is considerably different from the other two. It is a measurement of the boot
process of a commercial real-time kernel running on an 88110-based architecture. The absolute
performance is much lower because the core interpreter is older and the boot-process is intensive in
page faults, interrupts, and device programming. The cache performance is truly poor (>30%
misses), since this version of the kernel did not cache portions of the address space. Again,
simulating the data cache only diminishes performance slightly.

Summary and Conclusions
We presented several techniques that are useful when designing an efficient system-level
instruction set simulator. We have addressed the problem of efficiently simulating memory,
including cache, so that the performance is not too heavily penalized when simulating a memory
hierarchy and gathering statistics.

Despite having a heavily optimized simulator core, we have written SIMICS in a sufficiently
modular fashion to support simple addition of new memory hierarchies and interactive
specification of number of nodes and processors. Physical memory, data structures for cache
simulation, and intermediate code pages are allocated lazily.

The design ideas have been used to implement efficient multiprocessor simulators based on the
Motorola 88110 processor and Sun’s Sparc v8 architecture. The resulting simulator runs programs
at around 2 million instructions per second on a high-end Sun workstation, including operating
system binaries.

We conclude that the techniques can be applied to simulate any similar RISC-like architecture and
that the performance of a simulator is not dominated by statistics instrumentation if designed
carefully.
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