
TransmetaTM CrusoeTM Hardware, Software, and Development

David Keppel amas-bt-2009@xsim.com

Abstract

Transmeta was founded to build simple VLIW microproces-
sors with high clock speed, short pipeline, and enough issue
width for high performance. Crusoe is the first Transmeta
product. The only programs it runs are simulators, which
in turn run operating systems and applications. This paper
briefly describes Crusoe’s hardware, software, tools, and
development process.

1. Introduction
Transmeta1 was founded on several observations: past
VLIW projects gave good performance but had compati-
bility problems; the Shade [CK94, CK95] simulator some-
times gave performance close to one host instruction exe-
cuted per target instruction simulated, suggesting simula-
tion as a compatibility solution; and, for the time being,
x86 was the industry standard ABI. The goal was to build a
low-cost, high-performance microprocessor with 100% x86
compatibility. The first product was the Crusoe micropro-
cessor.

Crusoe is2 a traditional VLIW, plus simulation sup-
port [CDE+00, DGB+03]. One kind of support is for sim-
ulating any machine. As example, Crusoe has transactional
commit/abort. Code is over-optimized, with safety checks;
on failure, pending work is aborted, then re-run with lower
optimization. A second kind of support is specifically for
x86. For example, a special hardware flags register com-
putes flags using x86 rules. x86 simulators thus have x86
flags “for free”, while non-x86 simulators must compute
flags in software.

Notably absent is hardware support for decoding simu-
lated instructions. Instead, software does all target instruc-
tion decoding. Crusoe thus truly simulates all instructions,
and can run arbitrary instruction sets, given a suitable simu-
lator. Transmeta’s first public demonstration showed a ma-
chine simultaneously running both native x86 and native Pi-
coJava bytecodes. Quake compiled to PicoJava ran as fast
as it did compiled to x86.

1Code Morphing, Crusoe, Efficeon, Intel, Microsoft, Microsoft Win-
dows, MMX, and Transmeta are trademarks of their respective owners.

2For simplicity, this paper uses “is” instead of “was”. Transmeta
stopped selling microprocessors in 2007 [Shi97] and was soldin 2008.
The term “x86” refers to generic members of the Intel 8086 family, includ-
ing IA-32.

The only programs running directly on the VLIW host
are simulators, called “code morphing software” or CMS.
CMSes are substantially patterned after Shade, using a main
dispatch loop and cached and chained translations. Where
Shade was simple, CMS is complex, supporting user and
kernel modes; x86 segmentation and stack floating-point;
optimizations to run CMS quickly; optimizers so gener-
ated translations run quickly; and multiple implementation
strategies to run a wide range of user, system, and BIOS
codes with consistent performance.

As important as the final product, are tools used to build,
run, and debug Crusoe. Example tools are reference x86
simulators and corner-case tests; a fast simulator and fault-
isolating debugger used to run CMS both while hardware
was in development and also long after hardware was for
sale to the public; and a highly automated test farm and test
generators.

2. Hardware

Crusoe’s conventional VLIW issue includes two integer
ALUs, an SSE-style FPU, memory load/store, branch, and
special register access. Up to four types may issue in one
VLIW instruction, but only in some combinations. Indi-
vidual operations in an instruction may be suppressed un-
der software control, allowing an individual operation to
be simulated or suppressed, without affecting or needing to
simulate the others [CDS03]. Long-running operations are
typically interlocked, but short-running operations are not,
using software scheduling instead [DGB+03].

x86 registers may be used as two 1-byte registers, a 2-
byte register, or a 4-byte register. The VLIW has 64 flat
4-byte integer registers, with narrow 2-byte and 1-byte op-
erations that do not sign extend. 32 80-bit FP registers
match the x87 FPU, with 32-bit and 64-bit operations so
MMX/SSE operations do not get excess precision.

Branches have no delay slot, but indirect branches may
stall to a pipe depth of 5 cycles. Indirect host branches
are used commonly in interpretation and in some transla-
tions. An indirect branch pipe allows branch targets to be
pre-loaded into the pipe. If the preload is at least 5 cy-
cles ahead, a branch-to-pipe instruction executes without
delay [BCH03]. A branch pipe is generally difficult to use,
but a few stylized uses are practical and show substantial
speedup.

1



A departure from conventional processors is commit and
abort, which implement a transactional model. Crusoe has
two main structures for commit/abort: shadowed registers
and a gated store buffer [KW99, WD00]. Shadowed reg-
isters are implemented as a pair of registers. On a register
write, only the “working” register is updated. On a commit,
all working registers are copied to corresponding “commit-
ted” registers; on abort, committed registers are copied to
working, thus erasing any changes since the last commit.
Shadowed registers include some integer, FP, and special
registers. Shadowing only some simplifies hardware, and
gives a place to store “why” state when a transaction is
aborted.

The gated store buffer is conceptually similar to a regular
store buffer, but only entries which have passed a commit-
ted “gate” are allowed to drain. On a store, the working gate
register is advanced. Working and committed gate values
are handled as with other shadowed registers. On loads, the
whole store buffer is snooped, whether or not committed.
The gated store buffer is conceptually simple, but has subtle
complexity. First, it is large, because translation size isof-
ten limited by the number of stores, and using smaller trans-
lations hurts performance. Second, some snooping corner
cases must be resolvable without draining the store buffer,
because draining implies commit.

Physical memory is divided into a CMS-only section and
a target-only section. CMS memory holds the simulator
code, translations, and simulator data structures. The target
section contains committed target memory state. Pending
uncommitted stores are never released from the store buffer
until committed. A third, on-chip “local” memory is small
and has guaranteed fast access and is accessed with short
instructions. Local memory holds frequently-used state that
is not so frequent it deserves fixed allocation in VLIW reg-
isters. Local memory holds both CMS and target state.

More support for general simulation is provided by “alias
registers” [WK99, Kla00, RDP06]. Each holds the address
of a memory operation and is tied to a comparator that
signals an exception if it overlaps with a memory opera-
tion. CMS may then arbitrarily reorder memory operations
within a translation, saving dependencies in alias registers.
If a reordered memory reference overlaps another, the trans-
lation is aborted and retranslated at lower optimization. In
practice, most loads and stores can be reordered.

Target-specific simulation support includes condition
code flags mentioned above. A second set of condition
codes is used by CMS, and avoids multiplexing a single
condition code register [CK93].

The first VLIW design used no segmentation hardware,
but after better workload analysis, hardware segmentation
support was added for certain common cases. Although
segmentation support mimics some usual x86 segmentation
functionality, the bit-level layout is distinct. Performance

counters implement a superset of x86 counters, and are used
both to implement x86 performance counters and internally
by CMS [CKB01].

The TLB has both generic simulation support and x86-
specific support. It has the same page size and basic pro-
tection controls as an x86, although the underlying organi-
zation is different. The TLB is software-invalidated. CMS
must detect instruction space changes, as x86 uses implicit
rather than explicit instruction/data consistency [Kep09].
Thus, the TLB has two write-protect bits, one for x86,
and one set during translation from a page, so subse-
quent page writes fault and CMS can invalidate transla-
tions [KCW96, KCW00], and the TLB is used even when
x86 paging is disabled. Later Crusoes have a small cache of
sub-page write-protect bits used sometimes when code and
data share a page [BAG+01].

The TLB also has four bits that compare against a spe-
cial “match” register. x86-level TLB invalidations typically
increment the match register, rather than performing a full
invalidation. The TLB is 4-way associative and sectored,
with a valid bit per sector.

An x86 has three kinds of I/O. Memory-Mapped IO, or
MMIO, uses ordinary “memory” loads and stores. When
they “miss” RAM, they perform device reads and writes in
a 32-bit address space (36 bits with PAE). Direct Memory
Access, or DMA, allows devices to asynchronously read
and write RAM in the same address space as MMIO. In-
Out I/O, or IOIO, usesin andout instructions that read and
write devices in a separate 16-bit address space.

Various details complicate I/O. One device may be con-
nected to both address spaces. A portion of the low
megabyte of address space is mapped to a legacy video
device and never to RAM. Another portion has reads and
writes steered separately. One use is an x86 BIOS copy
loop that does simply “read X; write X” to copy from a
memory-mapped ROM to RAM, while executing from the
same page that holds the data being copied. Crusoe has spe-
cial steering hardware for just these addresses; it is unused
for other targets.

DMA is conventionally performed by an asynchronous
copy engine, but on Crusoe that introduces coherency prob-
lems for translated code. Crusoe uses a DMA interrupt and
CMS performs all DMA and checks for translation invali-
dation [BKK+03]. Software DMA serializes DMA and re-
moves benefits of concurrent computation and communica-
tion, but early workload studies showed DMA was rarely
used. DMA is common in newer workloads, and Cru-
soe’s successor, Efficeon, uses a simple DMA engine which
handshakes with CMS to ensure DMA writes do not overlap
translations, but allows asynchronous DMA otherwise.

Ordinary memory can be read multiple times without
side-effects, which in turn allows speculative operations.
Memory-mapped I/O, however, must be read exactly once

2



for each target read request. This is complicated to sim-
ulate, as any memory reference, including an instruction
fetch, can go either to real memory or to memory-mapped
I/O. To make translation practical, VLIW loads and stores
use two address space identifiers, or ASIs: “normal” (#n)
and “abnormal” (#a). RAM is accessed only with#n. A
load or store to an MMIO address with a#n ASI causes a
“normal assumed” exception. Similarly, MMIO uses only
#a. These ASIs enable translation optimizations for RAM
accesses, while ensuring correct behavior on MMIO. Large
objects, such as 80-bit FP and multiword x86 complex data,
are implemented using multiple VLIW loads and stores. To
ensure “all or nothing” behavior, a sequence ofcheck in-
structions precede and protect large loads and stores. Check
instructions fault if the corresponding load or store would
fault [KSD03].

The PC architecture extends beyond the x86 instruction
set, and includes bridges for memory and external devices.
Crusoe uses a memory controller integrated with the CPU.
The North Bridge, which is closest to the CPU, is imple-
mented in software, with underlying VLIW CPU support
for memory control registers, etc. x86 bootstrapping with
an integrated memory controller is somewhat complicated,
as RAM is checked by CMS before the first x86 instruction
runs, but x86 software can reconfigure RAM. The South
Bridge is a commodity part, as used with other x86 CPUs.

Older x86es use the PCI bus for graphics. AGP became
popular during Crusoe development and offers much higher
performance via a faster bus and RAM-like behavior. AGP
is not included in Crusoe hardware, limiting both graphics
performance and GPU compatibility. Crusoe’s successor,
Efficeon, has AGP.

Crusoe power management includes LongRun [Kla00,
HAC+06, RHK07]. LongRun allows the processor to
quickly stop, adjust clock speed and voltage up or down,
and restart. CMS controls LongRun, increasing speed when
the processor is continuously busy, and decreasing it when
the processor is mostly idle over some interval.

Savings are substantial because lower frequencies al-
low proportionally lower voltages, and dynamic power con-
sumption is roughly proportional toV 2

F and leakage is
roughly proportional toV 2. Thus, running at 90% fre-
quency uses roughly 70% static and 80% leakage power
compared to running at full speed. LongRun2, introduced
with Efficeon, extends theV 2

F observation, using an ad-
justable substrate bias to cut both static (leakage) and dy-
namic (switching) power, and to increase switching speed.
Actual energy use varies, as a slower processor takes longer
to complete work and thus spends less time in deeper power
management states, but in practice CPU energy savings are
often substantial; and in a typical laptop, the CPU is the
second biggest energy user, after the display backlight.

Performance at 90% clock speed is also typically better

than 90%: many workloads spend substantial time blocked
on memory, and memory typically stays at 100%. Thus,
cache misses are effectively faster when the CPU is slowed.

LongRun complicates characterization and binning be-
cause transistors are not precisely linear, so transistorsmay
“bin” differently depending on the specific voltage and fre-
quency setting. Yields are improved by using higher volt-
ages, but at the expense of higher power consumption. Dif-
ferent settings could have been allowed for each part, but at
intolerable manufacturing expense to manage multiple V/F
mappings for each part.

VLIW registers allow software to choose higher or lower
power/performance settings, then request a level change.
The request briefly stops all execution while hardware
changes power supply voltage, frequency multiplier, resyn-
chronizes the PLL, then restarts execution. Some care is
needed to ensure the power supply does not glitch during
voltage changes. Since no work is done during changes,
LongRun software must balance what V/F settings to use,
when to change, and how often to change.

All exceptions go to a common trap vector. Exception
types include usual processor exceptions plus “special” ex-
ceptions to support simulation. Exceptions are typically ser-
viced two ways. One is “fix up and continue.” For example,
on a TLB miss fault, a simulation routine reads target page
tables, loads the hardware TLB, then restarts the faulting
instruction. Another example is to simulate a faulting oper-
ation, then restart the faulting instruction with the relevant
pipe disabled [CK04]. A second service category is “abort
and go to main loop.” For example, if the store buffer over-
flows from too many uncommitted stores, the current trans-
lation is aborted and the simulator creates a new translation
with fewer stores between commits. (The number of stores
is often not known during translation, see§3.) x86 inter-
rupts, including DMA, are also handled via abort to ensure
handling when x86 state is precise.

Exceptions set a “fault” bit in hardware, and return from
exception clears the bit. If another fault occurs while the
bit is set, control vectors to a special “double fault” location
in the exception vector, whose handler carefully services the
nested fault [AK04]. Nested faults are dynamically rare, but
there are many corner cases that can give rise to them. For
example, placing page tables in video memory causes TLB
miss handling to take a normal-assumed fault; the transla-
tion is aborted, then during interpretation the miss handler’s
#n load is promoted to#a. Nested fault handlers increase
software complexity because there are multiple handlers for
each fault type, but nesting speeds common-case handlers,
e.g., by allowing a dedicated temporary register or by ignor-
ing uncommon cases and letting them double fault.

3



3. Simulator: CMS
Crusoe hardware runs only one application: CMS. At a high
level, CMS is a “traditional” translator like Shade [CK94],
with data structures holding the target state (TS), and sim-
ulation code and data including a main loop, translator,
translation cache (TC), and a translation map (TM) used
to find a suitable translation given the current virtual state.
In addition, CMS keeps potentially extensive information
for each translation (TCinfo), and CMS uses an inter-
preter: it interprets instructions several times before trans-
lating them, and interprets to handle certain corner-case
behaviors. Other components include “out of line” sub-
routines called from translations or the interpreter, called
“OOLs”; dynamically-generated repeat string OOLs called
“DROOLs”, an exception-handling kernel called the “nu-
cleus”, a simulated “virtual north bridge”, LongRun, power-
on reset, and cross-debugger support.

Target state is held principally in four places. First, target
memory is stored in a target-only part of host RAM. Sec-
ond, ordinary integer and floating-point/media (FP) target
registers are allocated to shadowed VLIW registers. Third,
complex non-memory target state is held in local memory
and cached in VLIW registers as needed. Targets with many
registers allocate target registers to VLIW local memory
and cache them in VLIW registers on demand. For the x86,
hard allocation to VLIW registers simplifies bookkeeping,
especially given the x86’s asymmetric treatment of regis-
ters. Finally, target device state is held in target devices:
CMS state exists only in the processor, RAM, and ROM,
and no target devices besides ROM and RAM are assumed
or required.

On entry to the main loop, CMS looks for a translation
that matches the current program counter (PC) and context
(described below). If no translation is found, the main loop
calls the interpreter, which updates instruction and branch
counters as it runs [TA05]. When a given instruction is ex-
ecuted a few tens of times, the interpreter returns, and in-
structions are translated using the branch statistics to guide
translation.

Interpretation costs on the order of 100 VLIW instruc-
tions per simulated target instruction, where translations are
typically under 1 VLIW instruction per simulated target in-
struction. However, interpreting avoids translating rarely-
used instructions, which may cost 10,000 VLIW instruc-
tions per translated target instruction. And, interpretation
collects profile data that greatly improves performance of
many translations. The interpreter also implements precise
x86 semantics and computes exact x86 state at every in-
struction boundary. The interpreter is thus used for deliver-
ing faults and for handling corner cases that are too rare or
expensive to handle in translations.

CMS finds translations by hashing the current target pro-
gram counter (PC) to subscript the TM. CMS matches both

virtual and physical addresses: the same code at a differ-
ent virtual address may need to be translated differently, as
not all code is PC-relative; and mapping the same virtual
address to a different physical address may reference differ-
ent code. The V-to-P check uses the TLB and so also per-
forms needed protection checks. CMS also matches saved
information called “context” [KCB01]. For example, an
instruction may execute differently in real mode than pro-
tected mode. Rather than generate one general translation
that works for both modes, CMS generates a streamlined
translation for each situation.

Other approaches are possible, such as TM invalidation
on each mode transition. But using context allows fine-
grained choices. For example, the user/kernel mode is in
the context, and mode checks are performed at translation
time rather than during execution. The context risks dupli-
cating translations, but what goes in the context is chosen
so in practice most code is executed in only one context.
A problematic case was emulating the mapping from x87
stack to VLIW registers. Most code executes a given FP in-
struction with only one mapping, but non-FP code is often
run with many FP mappings. This was solved by moving
FP stack mapping to hardware [RDD+04].

The main loop has various entry points: translations may
return to the main loop in various ways depending on their
status. The interpreter also branches to the main loop. And
while nucleus aborts largely sanitizes x86 state, there is sim-
ulator state which merits special treatment on exceptions.
For example, “store buffer overflow” is handled by retrans-
lating with more frequent commits; “x86 page fault” is han-
dled by executing instructions one-at-a-time until the fault
reoccurs, then by branching to code which simulates page
fault delivery then resumes x86 execution [TK01].

A goal of CMS is to minimize trips through the main
loop and instead branch directly to suitable code. Examples
of this include translation chaining, retranslating to avoid
speculation exceptions, and so on. A case which is com-
mon and difficult to avoid is indirect target branches, which
may go to any address. Where branches are dynamically
predictable, a flavor of receiver caching [DS84] is efficient.
However, many indirect branches are unpredictable. For
example, return from a procedure such asstrlen(), which
often has many callers. For unpredictable branches, CMS
uses a fast lookup in a small cache of recent lookups, falling
back on misses to a general TM lookup. Early Crusoe
uses a software cache; late Crusoe uses a small hardware
cache [BCT+03].

A translator for a Shade-like simulator is straightfor-
ward: for each target instruction, emit a “canned” sequence
of host instructions, and repeat until a branch, until some
threshold is reached, or until an especially tricky case is
reached. In contrast, the CMS translator is an optimiz-
ing compiler whose source language is decoded x86 in-

4



structions, and whose optimization strategies include con-
ventional things like common subexpression elimination,
VLIW-specific instruction scheduling, and unconventional
things like alias protection for speculative code motion.

The translator first reads x86 instructions and decodes
them to an intermediate representation (IR). The transla-
tor typically reads instructions that have already been in-
terpreted, but may read new instructions and thus must
perform all usual fetch-time checks. The interpreter col-
lects conditional branch profiles, and the translator fol-
lows branches but often avoids branch-to-self to avoid store
buffer overflow – Crusoe translations are single-entry mul-
tiple exit, and while they may contain embedded loops,
they tend to be more like DAGs rather than full sub-
graphs [DS84, May87]. Once a translation is generated, it is
sometimes retranslated into several simpler translations, but
translations are not merged [May87] except for chaining.

TM lookup performs a page protection check on the first
instruction in the translation. When a translation spans
pages, the translator generates checks for other pages in the
translation [BKB05]. Chaining to a translation on a differ-
ent page goes by way of a page protection check called an
“interpage prologue” or IPP [BKB05].

CMS optimizations include “traditional” compiler opti-
mizations as well as simulation-specific and Crusoe-specific
optimizations. All optimizations would ideally provide
good translation speedup with little translation-time cost.
However, choosing optimizations is tricky, as benefit varies
widely with the workload, and even cost varies some with
the workload.

It is the nature of machine code that translations often
contain redundant subexpressions, especially for memory
addressing. Constant folding and propagation are also use-
ful. Translations often speculate branches based on inter-
preter profiles, and commit and branch to another transla-
tion for the not-predicted path. Thus, translations typically
have few internal branches, and various loop optimizations
are of less value. Short target subroutines may be inlined
in a translation – being sure to push and pop the target PC.
Translations do, however, have branches to call OOLs.

The VLIW has eight alias registers, which allows loads
and stores to be moved speculatively. If they overlap, an
alias exception is delivered, but except for memory refer-
ences that “obviously” overlap, most do not overlap, so the
compiler often does a good job choosing non-overlapping
operands. The compiler avoids using alias registers where
it can: one translation often has tens of loads and stores,
making alias registers a scarce resource. Some cases are
amenable to translation-time analysis, for example adjacent
offsets from the stack pointer within 4096 bytes never over-
lap, even if adjacent stack pages map to the same physical
page. (In real mode, segments can be arbitrary sizes, but
segment wrap only occurs with full-size segments, which

are a multiple of page size.)
VLIW instruction scheduling typically schedules the

longest path then fills available slots where possible. Alias
registers and the corresponding load/store motion often
makes translations significantly shorter. Alias speculation
occasionally fails and requires retranslation. Failure israre,
so for nearly all applications it is at least a slight win, and
for some nearly doubles performance [DGB+03].

Register allocation is somewhat complicated, as some
registers are dedicated to target state and so are live on entry
and cannot be renamed on exit. With many registers, mod-
est issue width and a short pipe, register pressure is not typi-
cally a problem. The x86 flags register is set by most x86 in-
teger instructions, and some x86 instructions set only some
flags leaving others with their earlier values. Thus, analysis
is needed to safely remove flags operations and keep flags
calculations from being a bottleneck.

Crusoe also simulates x87 FP, whose architecture in-
cludes eight FP registers, a “valid” bit per register, and a
“top of stack” (TOS) register, often used to treat the reg-
isters as a stack. FP instructions contain offsets which are
added to TOS, mod eight, to form absolute register num-
bers.fadd is a two-operand add, where one operand is off-
set zero. faddp also increments TOS; in typical use, the
second operand has offset one, sofaddp has the effect of
popping the first register and making the second register the
new top of stack, which the next instruction accesses with
offset zero. Crusoe uses a hardware TOS (but see§5).

Each x87 register also has a valid bit. Reading an invalid
register or overwriting a valid register causes an exception.
In typical use, valid bits are set for register numbers TOS
and higher, and clear for lower-numbered registers. CMS
detects this and only simulates valid bits explicitly when
they follow a different pattern.

The x87 has deferred errors, where state about each FP
instruction is saved internally, and executing a later FP in-
struction delivers pending errors. The saved state is: the
code segment, PC, opcode, data segment, and operand off-
set in the data segment. Saving that state substantially com-
plicates and slows simulation. However, target FP instruc-
tions are often clustered, so a single translation has only one
“last” FP instruction that is complicated to simulate. Most
but not all FP instructions check for pending errors; errors
may be ignored or delivered; and errors may be delivered
as exceptions or interrupts, optionally routed through off-
chip logic, and optionally cause the x86 to stall until a non-
maskable or non-masked interrupt.

The VLIW store buffer is 32 entries, but translation typi-
cally stops at fewer than 32 x86 stores. Many stores take up
more than one store buffer entry because misaligned stores
may span store buffer entries and because x86 memory ac-
cesses cause implicit “accessed” or “dirty” bit writes to the
page tables, again using store buffer space. Some CMS state

5



writes use buffered stores. A few x86 instructions use more
than 32 entries. For example,fnsave directly uses 29 to 37
store buffer entries, depending on the size and alignment of
the operand – plus any used implicitly for TLB accessed and
dirty bits. CMS does not directly translate large cases but
instead the translation calls an OOL. The OOL pre-checks
all stores for possible faults; if all are safe, stores are com-
mitted incrementally.

Translation also stops for other reasons. One reason is
target instructions that make pervasive state changes, mak-
ing further translation difficult. For example, state loaded
from target memory that changes the context. Translation
also typically stops soon after MMIO loads, because many
translated operations handle corner cases by aborting, and
MMIO loads cannot be aborted and may not be repeated.
Translation need not stop immediately, but many instruc-
tions cannot follow “tricky” instructions, and these are usu-
ally encountered soon enough.

To reduce duplication, translation sometimes stops on
x86 instructions that are already translated. Translationalso
stops after at most 200 x86 instructions [DGB+03].

Finally, translation may stop due to adaptive retransla-
tion: CMS records when and why a translation fails, so
retranslation can create better code for the situation. As
an example, when a particular x86 instruction faults fre-
quently, CMS may generate a new optimized translation
that ends just before the faulting instruction, followed by
a translation that branches directly to the interpreter to han-
dle faults [DGB+03]. Adaptive retranslation is also used to
deoptimize when speculation is too aggressive, though this
does not necessarily shorten translations [DGB+03].

Translations are stored in a conventional TC. Shade-like
translators typically fill the TC then invalidate it completely.
CMS translation is expensive, typically thousands of VLIW
instructions per translated x86 instruction, so CMS reclaims
TC space incrementally to save retranslation overhead. The
TM matches virtual address, physical address, and context.

The interpreter and translations both call OOLs. OOLs
typically perform rare or expensive operations that would
otherwise bloat translations without performance gain. Ex-
amples include simulation of call gates, segmentation
changes, north bridge simulation, and so on. Some OOLs
return to the caller and do not commit; other OOLs change
state in a way that makes chaining tricky and so commit
then return to the main loop.

A special case is x86rep instructions, which repeatedly
scan or move bytes in memory. For example, “scan for the
byte value B” or “move N words”. There are manyrep
variants, and some combinations of alignment and transfer
size are much faster with special-case CMS code.rep code
is large enough it is best to avoid inlining it in translations,
but like BitBlt [Loc87], there are many special cases, and
static specialization would bloat CMS. Thus, CMS demand-

compiles DROOLs tailored to particular calls. Although
there are manyrep cases, many programs dynamically use
just a few. Thus, performance is improved at low space cost.

User-level simulators use the host to handle most excep-
tions. Exceptions that are simulated typically poll whether
an exception is needed. System-level simulators typically
simulate all checks needed for delivery. CMS relies on the
underlying VLIW to deliver most exceptions and interrupts,
which are vectored through a “mini OS” called the nucleus.
CMS also simulates some checks, and also typically vectors
them through the nucleus with a “conditional trap” instruc-
tion, which is smaller than a conditional branch and also
reduces contention for the VLIW condition codes.

As an example of nucleus operation, consider a store in-
struction to the#n ASI which takes a “normal assumed”
exception because the store actually goes to MMIO. If the
faulting instruction was translated – that is, is in the TC –
the nucleus aborts and branches to the main loop, indicating
“retranslate abnormal assumed”. Static code typically does
not have “abnormal” variants, as that would roughly double
the size of OOLs and the interpreter, yet still leave tricky
corner cases such as a page-spanning read or write that
touches both RAM and MMIO. Instead, the nucleus copies
the faulting VLIW memory operation, changes the ASI in
the copy to#a, executes the copy, then restarts the except-
ing VLIW instruction with that memory pipe suppressed, so
the original load or store is not reexecuted. Page-spanning
loads and stores are split as needed, and MMIO byte lanes
masked. Any MMIO, once performed, must not be in-
terrupted or aborted, so the interpreter and interpreter-like
OOLs execute each instruction under lock, and all static
code in the interpreter or callable from the interpreter fol-
lows certain rules to ensure aborts are never needed once a
#n load or store is promoted to#a.

Note that a copied instruction may itself take an excep-
tion, for example due to a TLB miss or page table dirty bit
write. In that case, the nucleus takes a doublefault exception
and carefully saves state so the nested exception handler
does not step on the first-level handler. The nested fault is
serviced, then state is restored and the first-level exception
resumed. On a dirty write, the store buffer may overflow,
causing the doublefault handler to be invoked recursively,
called a triple fault. Store buffer overflow and other such
cases cause an abort, so interpreter code is constructed to
avoid cases that can give rise to overflow. As example,fn-
save checks all permissions before performing any memory
operation, then commits stores incrementally to avoid store
buffer overflow.

x86 and DMA interrupts are also vectored through the
nucleus. The nucleus aborts and branches to the main loop.
All of CMS must therefore be built so all nonshadowed ac-
cesses are safe against interrupts. As example, a nonshad-
owed register may be read and then written between com-

6



mits only if interrupts are locked out. Similarly, all memory
references that use the ASI#a or which might be promoted
by the nucleus to#a are locked, stay locked until the next
commit, and must not abort.

Simulation of self-modifying x86 code is problematic
in part because the x86 relies on hardware instruction/data
coherency, where most other processors have a software
mechanism to indicate I/D changes. “Self-modifying” code
takes many forms, including paging (code pages are reused
to hold different code), dynamic compilation at various
grain sizes and reuse rates, one-time instruction patching
such as used by some dynamic linkers, and patching of in-
dividual bits or fields in some instructions [Kep09].

To respond with good performance, CMS uses several
mechanisms. In most cases, the primary goal is to avoid
frequent retranslation, as that is the highest cost, often two
orders of magnitude slower than interpretation.

By default, code pages are write-protected during trans-
lation. The VLIW TLB has a second write-protect bit called
the “T” (translate) bit. For each page translated, CMS sets a
bit in a simulator data structure and invalidates TLB entries
if the bit was clear. On TLB miss, the TLB’s T bit is loaded
from the data structure.

Write faults invalidate all translations for the page, so ex-
ecuting from a modified page forces retranslation. If fault
rates for a page are high, CMS uses a variety of strate-
gies that are asymptotically slower but also less sensitive
to change.

“Self-revalidating” translations use a VLIW structure
that divides a page in to subpages and keeps a bit per sub-
page. On a first write, a write fault handler marks the sub-
page as writable but not executable; subsequent writes do
not fault. Special translations for these pages check the
corresponding bits for all subpages used by the translation.
When all subpages are executable, the translation simply
executes. If a subpage is marked writable, the translation
compares current x86 memory against bytes saved at trans-
lation time. If all match, the bits are marked executable, and
further uses of the translations do not need to re-check. If
any mismatch, the translation is invalid and CMS uses an-
other strategy. This strategy efficiently handles most cases
where code and data are on the same page and code rarely
changes. Although the VLIW structure is small, applica-
tions rarely have many pages sharing code and writable
data [BAG+01, DGB+03].

“Self-checking” translations use unprotected pages: ev-
ery time a translation is invoked, it compares the current and
saved bytes [BAB+03]. Self-checking translations are thus
slower than self-revalidating translations, but can compare
only those bytes used for the translation itself, rather than
a whole subpage, and they eliminate write faults and state
ping-ponging of self-revalidating translations [DGB+03].
The x86 assures coherency after a branch, after executing

16 bytes of instructions, or after a serializing instruction.
Thus, some checking must be done late in the translation,
after any possible writes.

When only immediate fields are changing, translations
can fetch the values from the x86 instructions, being sure to
skip immediates in checks [DGB+03]. Where instructions
change but only to a few “stylized” patterns, CMS keeps
a list of previously-generated translations and checks if any
have become valid again [DGB+03]. Finally, CMS can gen-
erate a translation which simply calls the interpreter, thus
avoiding further overhead to “rediscover” where interpreta-
tion is needed.

CMS is also heavily involved in power management.
Longrun manages two types of state transitions. When
an x86 is idle, the OS executes a HALT. LongRun tracks
these and slows the CPU the more often it is idle. At idle,
LongRun also sets a countdown timer; when there is no
idle time the timer expires, signaling LongRun to increase
speed. At top speed, no timer is needed, so LongRun has no
overhead.

CMS bootstrapping is different than most simulators: At
power on, CMS runs – slowly! – from the system ROM. It
copies code to local memory, executes from local memory
to configure RAM, then copies CMS to the CMS part of
RAM, initializes the x86 state to power-on-reset then starts
executing the BIOS.

CMS is stored in a programmable ROM along with a
backup “fail safe” CMS. CMS changes are cryptographi-
cally protected against downloading arbitrary code, and the
backup ensures that even a power failure during reprogram-
ming is recoverable. Primary and backup CMS versions
are in isolated physical parts of the ROM so power failure
during CMS write cannot corrupt the backup CMS. CMS
also has a fixed-format configuration table at a well-known
address, used to hold configuration data such as CMS and
LongRun tuning parameters. It is not writable by users, but
supports vendor configuration for each platform.

32-bit x86 was the only Crusoe released publically. x86-
64 was implemented on Crusoe hardware [KF03]. It had
about 100x lower performance, due partly to multiplexing
64-bit operations on 32-bit hardware, but due mostly to in-
terpreting only – no translation. Though incomplete, the
x86-64 implementation passed all existing validation tests
and could boot and run OSes and applications. It was prob-
ably the first hardware x86-64 processor, predating even
FPGA implementations.

4. Supporting Software

CMS exists only because of supporting software: reference
simulators, a fast VLIW simulator, error detection and iso-
lation tools, bug and source code management tools, build
and debug tools, test generation and test suites, test and

7



farm management, and performance monitoring, visualiza-
tion and navigation tools.

One part of building “an x86” is discovering and defining
“what is an x86”, then committing that to a reference sim-
ulator. A reference simulator is a standard for comparison
to find bugs in the product. There are many problems dis-
covering what is an x86: there are multiple standards, stan-
dards sometimes conflict, x86 implementations sometimes
disagree with standards, and some applications, including
OSes, depend on nonstandard behavior. Parts of some op-
erations are undefined and vary from implementation to im-
plementation. Applications may depend on combinations
of behaviors that are nominally independent; such applica-
tions are arguably buggy, but some have historically been
supported anyway.

For all these reasons, the reference simulator changes
continually to reflect newfound understanding of the x86.
Further, the reference simulator is also used to simulate var-
ious non-product x86es to diagnose changes between exe-
cution on the product x86 and a non-product x86. Thus,
the reference simulator needs to be easy to change, config-
urable, reliable, and fast enough to not be a serious bottle-
neck. In practice, execution speed is typically over 100 host
instructions per simulated target instruction.

CMS development started years before working VLIW
hardware. Development uses a fast VLIW simulator that
uses dynamic translation and runs on an x86. It typically
runs about 30 host instructions per simulated target instruc-
tion. As CMS matured and approached 1:1 x86:VLIW,
overall performance under the VLIW simulator was so good
it could boot and run x86 operating systems in something
approaching real time – visibly slow, but still fast enough to
enable many kinds of work that would have been infeasible
on a slower simulator.

Even with VLIW hardware available, fast simulation is
still vital. At first, only a few systems are available, they
are in high demand, and are potentially flaky. As systems
are more widely deployed, the superior environment in sim-
ulation still makes it preferable for many tasks. Finally, as
hardware is revised, simulation is again available before re-
vised hardware, allowing development, testing, and mea-
surement to proceed with workarounds removed and new
features added.

The VLIW simulator is itself a study in simulator con-
struction: the host x86 has few registers, and the target
VLIW often shadows resources to speed up simulation, so
the fast VLIW simulator needs to simulate both sets of re-
sources. For example, the fast VLIW simulator keeps an
“undo” log. When writing a shadowed resource, it copies
the old value and address into the undo log. On commit, the
undo log is discarded. On abort, undo log values are written
back to memory. However, nonshadowed values can also
be clobbered, so there is also an “undo-redo” log that is re-

played after “undo”.
The VLIW simulator’s commit/abort mechanism is ex-

tended to save total machine state, called a “checkpoint.”
Reloading an earlier checkpoint restarts execution from ear-
lier in the execution. Checkpoints include an I/O log, so
even interactive sessions with live input can restart from an
earlier checkpoint and replay I/O, thus reproducing execu-
tion exactly.

The reference simulator also supports checkpoint and
restart. In principle, adding checkpoint and restart to any
simulator consists of saving and restoring target state and
logging target I/O for replay. In practice, simulators tend
to cache target state in various tricky ways. For example,
a translating simulator may cache translations based on a
bit in a target register, and moving to a different check-
point may change the bit. Thus, a simple bit copy of target
state may be insufficient. However, an “official” interface
to change the bit may perform consistency checks, so us-
ing it to restore state may signal an error, even though state
will be consistent again when checkpoint restore finishes.
In addition, the simulator may keep non-target state such as
pipeline state and profiles, and that state should be updated
at each checkpoint change.

Checkpoints are large – the size of the target state – so
frequent checkpoints and restarts are expensive due to both
the direct cost of copying state, and because restart often
needs to load a checkpoint from secondary storage. Op-
timizations such as asynchrounous writes speed up check-
pointing considerably, but it is often inconvenient to store
checkpoints in a format they can be resumed via demand
paging. For a simple restart, performance is rarely annoy-
ing, but binary searches during fault isolation (see below)
occasionally take a long time.

Checkpoints may be loaded by different debugger ses-
sions. Automated farm testing executes long-running tests
to find bugs, then leaves checkpoints so humans can quickly
get to the point of failure found by automation. Checkpoints
are also an easy way to hand off debugging sessions be-
tween developers.

Each simulated VLIW instruction is given a virtual
timestamp called a “vtick”. Each simulated target x86 in-
struction executed is given a virtual timestamp called an
“xtick”, whose name has stuck even for non-x86 targets.
CMS calculates the xticks performed by a translation and
tells the simulator using a specially-coded VLIW NOP. The
simulator can stop at a given vtick; since xticks advance
in chunks, it can sometimes only stop near a given xtick.
Restart from checkpoint is wrapped in a commandgo-
tov V or gotox X that loads from the most recent check-
point beforeV or X, then executes forward until the tick is
reached. Finally, the simulator saves checkpoints automati-
cally, so developers never “see” checkpoints, instead think-
ing in terms of executing to a specified tick. This facility is

8



called “reverse execution.”
The reference simulator and fast simulator both have

checkpoint and restart facilities, and are run together un-
der an execution control framework called the “nexus”. In
simple form, the nexus tells CMS to execute one translation
then stop, then advances the reference simulator to the same
xtick, then compares all of registers and memory, halting if
there are differences [KBK99]. Paired execution is called
“cosimulation.” Stopping every few instructions to compare
millions of bytes of memory is expensive, so in practice the
simulators are advanced by thousands to billions of x86 in-
structions. In this way, reference comparison costs are kept
to a small part of the total simulation cost.

When an error is found, it could be anywhere since the
last comparison. An early and vital feature of the nexus is
“narrowing”: the nexus backs up to the last agreeing com-
parison, then executes forward half the number of ticks to
the failure. If comparison fails, the error is in the first half;
if not, it is in the second half. This repeats until the nexus
arrives at the first xtick past failure. Thus, errors are isolated
to a specific failing translation, often in a few seconds.

The debugger runs the nexus. It also looks in the “guts”
of CMS. For example, the debugger prints VLIW registers
along with the x86 registers they represent. Thus, with a
few keystrokes it is possible to land at an error, examine the
host and target code, back up to the last agreeing xtick, set
breakpoints or single step, watch values changing, and even
examine low-level state, such as uncommitted entries in the
store buffer.

Although some errors are subtle, many are “obvious”
and easy to repair. Given the reference simulator and nexus,
the time from failure to repair is often just a few minutes.

Once VLIW hardware was available, the simulator was
extended, where possible, to provide the same views. For
example, much VLIW internal state is available via special
machine registers. The VLIW simulator was extended to
track even state that is not essential for VLIW simulation.
On hardware, the debugger also gives access to state that is
not simulated, such as cache tags and contents. Such state
can be queried interactively and can also be downloaded
for automated analysis – which sometimes proved vital in
diagnosing errors.

Many early bugs were simply found and fixed. Later
bugs are often more complicated and have several people
working together to discover, diagnose, and repair. Bug
tracking is largely done using Gnats, though customer-
facing groups use a tool with work flow. Gnats works
well for developers in part because it runs “cleanly enough”
within GNU Emacs, which is preferred by most software
developers and used frequently by others.

CVS with wrappers is used to manage CMS source code,
as well as sources for most tools. CVS has various well-
known limitations, some of which are solved by the wrap-

pers. Fortunately, most blocks of code are relatively inde-
pendent – building a specific version of CMS may require
a specific version of build and simulation tools, but such
dependencies are usually simple. Branches are used fre-
quently but with frequent merges against the trunk, or with
an explicit plan to never merge.

Custom build tools are used to generate VLIW object
code. Much of CMS is written in C with selected exten-
sions. Some extensions give access to special VLIW hard-
ware, for example special registers in the VLIW. Many ex-
tensions control compiler behavior. For example, some
code is checked using PC ranges, so it is vital an inline
function really is inlined; a compiler directive causes com-
pilation failure if the routine is not inlined. Similarly, tail
recursion and other properties can be assured.

A fast build system is useful for all development, but vi-
tal for a code base with frequent checkins and loose checkin
requirements. The build system uses both incremental and
“from scratch” build servers for CMS. Incremental builds
sometimes give false failures due to bad dependencies, but
can validate or refute a checkin in just a few minutes. The
full build server is more reliable, but can take many tens of
minutes. Often, errors are fixed and checked in well before
the first full build reports failure. A fast build system is a
mixed blessing, in that it encourages sloppy checkins. On
the other hand, fixes and features by one developer can be
available to all in minutes. Especially in early development,
the ability to request a fix or feature and everybody have it
five minutes later is a great win.

Like the nexus, the build system does failure narrowing.
If there are five checkins while build #123 is running, the
build server next builds #129. If that fails, the build server
both reports failure and starts a binary search for which
checkin triggered the failure.

Once code passes rudimentary testing and checkin, it
goes through escalating tests. The first tests are simple ones
that have often failed before [Cla91]. Better and better can-
didates are run on longer and longer suites, some running
for weeks. The best candidates, are subjected to human
testing, and some difficult or risky changes are also human-
tested. The fast VLIW simulator means human testing can
begin long before hardware is ready; and starting human
testing early means increased maturity when hardware is
available.

Testing uses both VLIW and x86 suites. Tests include
instruction-level tests and system level tests including per-
formance tests. VLIW tests are all written in-house, while
x86 tests include both in-house and external tests. External
tests include those bought from other companies, industry-
standard tests, applications and OSes used as tests, and
acceptance suites used by individual makers. Note that
“test” implies an acceptance or rejection criteria. Some
benchmarks have a checkable results file, but many do not.

9



Nonetheless, “crashes” and “fails to complete” are under-
stood to be a checkable failure. So while a benchmark
may silently (uncheckably) compute wrong answers, some
outcomes are easily recognized as failures. And although
benchmarks are not designed for fault isolation, some fail-
ures are easy to diagnose and can expose bugs not found by
any other test. Thus, it is valuable to at least triage these
failures.

Several automatic instruction-level and system-level test
generators are used for both VLIW and x86 testing, in ad-
dition to traditional hand-written tests and real workloads.
Automated tests are used for both hardware and software
development, and for both finding and diagnosing failures.
Automated test generators produce tests which are compli-
cated enough to find failures not found by simple tests, and
are often simpler to diagnose than failures in real work-
loads. Once bugs are discovered, the test generator can
be constrained to exclude or emphasize certain features in
order to help find small and easy-to-debug test cases. Al-
though “narrowing” is often time-consuming, it can be auto-
mated to a degree, and can proceed in parallel with diagno-
sis of test cases so far. In practice automated tests find both
hardware and software bugs including tricky corner cases
missed by hand-written tests.

Debugging short instruction sequences from test genera-
tors “should” be straightforward, but often “easy” bugs have
already been found with hand-written directed tests, leaving
difficult-to-debug race conditions and the like. In contrast,
longer-running system tests less often find races and more
often find state bugs that span multiple translations. State
bugs can sometimes be reproduced in simulation making
them easier to reproduce. Further, system tests can option-
ally pause occasionally and “settle” to help isolate failures,
and can record their progress to simplify reconstruction of
the state leading up to failure. That said, there were an un-
fortunate number of VLIW races and system tests some-
times found them.

A traditional problem with hand-written tests is the au-
thor “knows” certain cases are unimportant and so skips
them and misses bugs. A traditional problem with psuedo-
random test generators is they generate many “boring” cases
for each interesting case. A technique used with good suc-
cess is biased random number generation. For example,
rather than testing a case with two arbitrary inputs, test with
inputs whose bit pattern isusuallymostly ones or mostly
zeros. This allows the test generator author to provide guid-
ance towards cases which are likely to be problems, but
since the inputs are only guided, not firmly constrained, the
random machinery still tests some cases the author thinks
are “boring”.

At the time Crusoe was being developed, some industry-
standard tests relied on a human reading a report screen.
Thus, automation was hard. One part of automation was

developing tools to pattern match the video output. This
sometimes yielded false failures, so video frames were kept
for human review.

Hardware is always in high demand and limited supply.
Even with processors in volume production, the in-house
debug systems are in limited supply and often need rework.
In-house farm hardware and software allow automated ini-
tialization of CMS, the BIOS, and the hard disk drive. This
in turn allows any machine to be used for any purpose. A
machine can be allocated, configured, and used for remote
interactive debugging. Then, no matter what it’s state, it
can, without human intervention, be reallocated and recon-
figured for another use, such as batch testing, with any de-
sired versions of CMS, BIOS, and disk image.

A small remote debugger stub is built in to CMS. On
CMS boot, the stub queries a special debug connector and
if “live”, downloads a larger debug stub before proceeding.
The stub provides general access, and the debugger’s user
interface is the same for simulation and hardware, as much
as possible, so a developer’s experience is nearly the same
for debugging on both simulator and hardware. With effort,
even cosimulation of hardware against a reference simula-
tor is possible, though the lack of reverse execution on hard-
ware is a serious shortcoming!

Debugger code is integrated with CMS bootstrap code.
On reset, vital pre-reset machine state is saved. Thus, even
after hard crashes, much state at the time of the crash is
available for postmortem analysis, and the debugger allows
downloading of the crash-time state. Then, as debugging
proceeds, one can go back to the postmortem dump and an-
swer more detailed questions about the crash.

A static theorem prover, the “Static Program Analysis
Machine” (SPAM), walks a user-supplied predicate over
CMS machine code, ensuring the predicate is true. For ex-
ample, it is usually an error to write a nonshadowed register,
abort, then read the register, since it is nonshadowed and
thus contains a value from the future. A predicate to find
violations iswrite X ; abort; read X for all nonshadowed
X. A complication is no translations exist statically, so there
are paths with unknown code. The solution is to annotate
entry and exit to dynamically-generated code, including ex-
ception paths, and claim behavior of the as-yet nonexistent
code.

Performance work also uses many in-house tools. The
fast simulator collects low-level metrics, and hardware has
performance counters [CKB01]. Hardware is accurate, but
has only a few counters and has run-to-run variations. Sim-
ulation is less accurate, but collects data as fine-grained as
per-instruction, and is repeatable. Fine-grained data is yet
another reason the fast simulator was used heavily even long
after hardware was available.

Performance visualization includes traditional plots of
bulk statistics, but it was quickly apparent detailed behavior

10



of individual dynamically-generated translations was sig-
nificant. A set of tools instrument translator and translations
to collect translation-level behavior and also save both tar-
get code and the generated translation. Instrumented code
is usually almost as fast as uninstrumented code, yet saves
enough detail a developer can start with a screen summariz-
ing the whole execution, then quickly zoom in to much nar-
rower “windows” of execution. Although statistical analy-
sis of bulk data is often important for an overall understand-
ing of “why is this slow”, actual diagnosis and repair often
depends on data from individual translations.

5. Some Development Experiences

Preceding sections describe hardware and software. This
section describes some development experiences, especially
those different than might be expected in conventional
projects.

Much of early software development is test-driven. That
is, the goal is to implement enough to execute the first in-
struction of the first test. Once that works, development
moves to the next instruction, even if the first instruction’s
implementation is incomplete and may fail on other tests.
This approach keeps development very focused. Produc-
tivity relies heavily on the reference simulator, reverse ex-
ecution, and the nexus. In a conventional environment, a
developer knows only a test has failed, and is responsible
for analyzing why. The nexus, however, reports “register X
diverged at tick Y” and stops, showing total state and allow-
ing the developer to back up one instruction and “watch” the
incorrect value being generated.

Hardware development is more traditional, but still has
unusual features. For example, there were three proposals
for how to implement a particular operation. All would hurt,
though in different ways. We dropped the operation and
did it all in software, as cheaper overall than any proposed
hardware solution. A hardware developer smiled broadly –
“This is the first project I have worked on where instructions
have beenremovedduring development!”

Keeping the fast VLIW simulator consistent with real
hardware is a potential nightmare, especially since CMS is
built around the fast simulator’s behavior. There could have
been terrible problems, but in practice problems are few and
minor. A big reason is the fast simulator and development
environment are so useful, hardware verification also uses
it for development, thus errors are corrected even before a
suitable verification test exists or hardware implementation
of that feature is started.

That said, some hardware features appeared in the fast
simulator late or not at all. For example, the fast simula-
tor implements enough bootstrap-specific behaviors thata
CMS boot sequence runs on both simulator and hardware,
but it is also possible to write a correct VLIW boot sequence

that does not run on the simulator. This “less than 100%”
implementation requires some care, but avoids simulating
tricky corner cases just for CMS boot, yet allows CMS boot
code development in the simulation environment.

In many situations, CMS works around hardware bugs.
For example, a pair of symmetrical hardware instructions
were implemented asymmetrically. Until hardware was
fixed, software simulated the faulty VLIW instruction. Al-
though simulation was much slower, it allowed CMS to run
on hardware, and reduced the “push” to finish the next tape-
out as soon as possible – thus increasing the number of bugs
that could be found, the number of fixes in the next tapeout,
and thus the rate of progress of each tapeout.

Software is also used to work around timing bugs. For
example, hardware uses a “cancel” signal shared by most
functional units. A new functional unit was added without
suitable timing analysis. If a unit at one end of the wire
applied a signal, and the unit at the other end had an in-flight
operation, the in-flight operation missed the signal and the
operation was not cancelled. The static compiler and CMS
translator were changed to avoid scheduling operations in
the same VLIW instruction if they were at opposite ends of
the wire.

Software changes are also used as a diagnostic tool:
given a hypothesis “the problem is due to X combined with
Y”, software can be changed to avoid that combination. A
variety of diagnostic features were developed and controlled
with flags. In addition, many control flags introduced dur-
ing development were left in for diagnostic use. Thus, many
diagnostic changes are as simple as changing a few flags.
Diagnostic changes may spuriously cause a symptom to go
away, but if a symptom continues, that shows a hypothesis
false. Flag changes are also used by people with no CMS
internals knowledge to work around bugs without needing
to wait for a fix. Thus, while some bugs are still show-
stoppers, other serious problems are discovered and worked
around in just a few minutes, with diagnosis and repair sep-
arated from other work.

Another diagnostic tool is instrumenting CMS. One way
to instrument is debugger scripts run at debugger break-
points. Another is editing CMS. Some diagnostics are suf-
ficiently useful they are checked in to the code base. Or,
a “framework” may be checked in – for example, certain
bytes of local memory are allocated for logging data about
the last N exceptions. The trap code to do the logging is
not checked in, as what to log varies, but reserving local
memory ensures certain offsets are always the same.

There is always competition for what stays in the code
base. On one hand, adding instrumentation is error-prone.
For example, one failure we reduced to one of two signa-
tures that occurred with roughly equal frequency. It turned
out one signature was due to my errors in adding excep-
tion logging code. On the other hand, checked-in diagnostic

11



code makes real code harder to understand, thus introducing
bugs; and, diagnostics sometimes makes code slower. One
compromise is a library of code that is not checked in the
main code base, but which can be patched in at less effort
and with fewer errors than writing it from scratch.

Hardware and software designs changed substantially
during development. For example, an early design of alias
hardware was difficult to use, even in the original situa-
tions for which it was devised. Thus, alias hardware was
unused when hardware first became available. A different
design was implemented in a later hardware revision, where
it “met up” with the CMS implementation which was devel-
oped in simulation but until then was disabled when running
on hardware.

Most FP instructions are invoked with a single TOS
value, so early versions of Crusoe used a flat FP regis-
ter file and simulated x87 indirection by putting TOS in
the context. However, non-FP code is often invoked with
many TOS values, which caused context mismatches and
duplicate translations. For example, most kernel code is
invoked with many TOS values. All shipping versions of
Crusoe have a hardware TOS value that is added, mod 8, to
the VLIW instruction’s register numbers to form the VLIW
hardware’s register number. CR0’s TS (task switched) and
EM (emulate math) bits are also checked by x87 FP instruc-
tions; early versions of Crusoe included these in the context,
but shipping versions explicitly load and test the flags as
needed.

Software changes were pervasive. Most of the world’s
fast simulator experts worked at Transmeta during Crusoe
development, but it was a learning experience for all. Much
of CMS was implemented twice – which Brooks would say
is a good thing [Bro75]. Some code that shipped after being
implemented only once, had a comment saying it needed to
be rewritten.

Some learning was about fast simulation; some about the
x86 target; and some about how applications ran on that tar-
get. For example, the x86 has several segmentation modes.
“Real” mode supports segments with byte-grain size, but
they must be small. “Protected” mode supports large seg-
ments but the size must be a multiple of the page size. Dur-
ing Microsoft Windows boot, a CMS assertion tripped on a
real-mode reference to an oversize segment. The reference
simulator showed the same reference, yet it ran Microsoft
Windows. It turns out switching to real mode does not al-
ter or invalidate sizes too large to have been established in
real mode. Operating this way is sometimes called “unreal”
mode [Aga91]. While not part of the ISA, all x86es support
it.

Another education was how RAM and MMIO pages are
interleaved. The simple model is RAM is low addresses,
and everything else is high addresses. However, a few
pages of low memory are dedicated for legacy video, and a

few more pages of low memory have “steering” bits, called
A20M, that control reads and writes separately. A typical
use is to copy a word from address X to address X – where
the read comes from ROM and the write goes to RAM.

This sort of use brings up all sorts of issues. One is what
happens when a single instruction spans a page boundary,
part in RAM – and thus translatable – and part in ROM,
so it must be fetched exactly once each time it is executed.
Our initial conclusion was nobody would ever write code
with one instruction in both RAM and MMIO, but doing
so must not crash or corrupt CMS. CMS uses#n fetches
in the translator and promotes normal-assumed instruction
fetch faults to the interpreter. Interpreting is slow, but ROM
fetches are even slower and are mandatory. Imagine our sur-
prise to discover OS/2 boot has an instruction that executes
from both RAM and video memory! Our guess is RAM
was exhausted and somebody said “Why not execute a few
instructions from video memory?” It could also have been
an accident that was never noticed because it “just works”.

The gated store buffer implements memory store com-
mit/abort. It has 32 entries, so it might seem CMS can use
up to 32 stores between commits. However, a suitably mis-
aligned store uses two store buffer entries. Further, a store
may implicitly write page table “accessed” and “dirty” bits,
while a page-crossing store can write accessed and dirty bits
for two pages. (x86 80-bit floating-point stores can touch 3
pages; they are implemented with a pair of VLIW 16- and
80-bit stores.)

Stores that are misaligned or which change page table
A and D bits are common enough translations are typically
limited to around 28 VLIW stores, including stores in OOLs
called by the translation. Thus, a few “unfortunate” stores
do not cause overflow. Even so, store buffer overflow is not
rare. Store buffer overflow is handled by retranslating with
smaller translations and thus fewer stores between commits.

Transmeta’s goal is 100% x86 compatibility. In many
cases there is a wide range of “legal” behaviors, and even
“legal” differences risk incompatibility for a system thatde-
pends on a behavior that is not guaranteed but is nonetheless
common.

One example of “legal but different” is page table “page
accessed” and “page dirty” bits. Most x86 processors write
them whether or not the instruction completes. Crusoe
writes them using commit/abort logic, so they are written
only if the instruction completes. Crusoe meets the specifi-
cation, but is different. Would x86 code rely on this subtle
difference? Crusoe could write them unconditionally, but
at higher complexity (consider page tables in MMIO) and
higher execution cost in the common case. We know of no
case where this difference led to problems, but it does reflect
details that, at every step, take time and effort to resolve.

Even where features agree individually with conven-
tional x86es, it is hard to exactly emulate any one x86. Cru-

12



soe has a unique combination of feature flags. In principle,
a system looks at each flag independently, so the combina-
tion is unimportant. In practice, Microsoft Windows does
not examine flags individually, but instead looks for com-
binations seen in real processors, and defaults to a minimal
x86 otherwise. Limiting feature combinations helps limit
user’s exposure to bugs. But it also means that since Crusoe
was missing one feature, Microsoft Windows was not using
any features until Crusoe systems were made available for
Microsoft to test that specific combination.

Even where Crusoe is bit-for-bit compatible, the timing
differs. Since there are many x86 implementations, most
time-sensitive code uses wallclock time rather than instruc-
tion counts. One Linux Ethernet driver failed, however, be-
cause it self-timed a loop; the initial timing run was inter-
preted, and thus slow; and normal execution was translated,
and thus fast. Similarly, translator pauses caused a soft mo-
dem to fail during real-time negotiation. The second try
always succeeded, as the code was now compiled.

A problem reported with early dynamic translators is
user-visible jerkiness during compilation. Although Crusoe
also has compilation pauses, and although Crusoe’s opti-
mizing compiler is more expensive, the higher performance
of modern processors – 1GHz vs. 10MHz – and Crusoe’s
interleaved interpretation makes the UI smooth, even when
overall execution speed is slowed.

Overall execution speed is slowest when translation and
interpretation rates are high and translation execution rates
are low, usually OS and application startup. Tuning can
improve worst-case performance. For example, interpret-
ing more and translating less can avoid translation of low-
reuse code. However, tuning for one case tends to hurt
others. For example, one Microsoft Windows certification
grade requires boot in a minute or less. Crusoe is tuned to
boot in under a minute, even though the tuning hurts per-
formance on some applications, including some important
benchmarks.

Crusoe performance improved during development due
to both VLIW and CMS changes. One VLIW change is
limited support for segmentation (§2); with better workload
analysis, it might have been added earlier. A pipelined indi-
rect branch (§2) and limited support for x87 FP simulation
(§5) followed several iterations of CMS development and
workload analysis. The original VLIW included alias hard-
ware, but it was changed due to problems with the original
design (§5).

CMS performance changes continued through develop-
ment. The original design was based on translation with-
out interpretation, with single-instruction translations as
needed. Translation was more expensive than expected,
and an interpreter collects profile data that significantly im-
proves subsequent translation. Interpretation yields better
performance, but means each x86 instruction has its behav-

ior defined in at least two places. DROOLs (§3) were added
to make a more careful tradeoff between optimization and
instruction cache pressure. The many approaches to han-
dling self-modifying code (§3) follow poor performance of
simpler approaches.

On CPU-bound work, Crusoe performance is compara-
ble to contemporary processors using much more power.
On typical work, performance suffers due to various bot-
tlenecks, including comparatively poor performance of the
memory subsystem, and serialization of DMA and compu-
tation (§2). Even where long-term average performance is
good, short-term slowness is sometimes visible to users.
Memory performance suffers more when interpretation or
translation is frequent, since x86 instructions are read as
data and so increase data cache pressure. During transla-
tion, VLIW instructions are first written to the data cache
then flushed to memory, then read to the instruction cache.

Further hardware changes could have boosted Crusoe’s
performance, but would have required major modifications
and thus greatly delayed delivery. Efficeon fixes many of
Crusoe’s performance problems, including better memory
performance, and overlapped compute and I/O. Efficeon has
much higher overall performance, even factoring in changes
in transistor size and speed.

“x86 compatible” includes both the instruction set and
the PC platform. An early decision was to use the same
RAM chips for both CMS and target memory. CMS boot-
strap code configures memory for CMS, then CMS runs the
BIOS, which configures memory. Thus, some memory con-
figuration done by the BIOS needs to be skipped or ignored.
The BIOS still has some memory “knobs” and is allowed
to use those where doing so does not misconfigure CMS.

As described above, one development strategy is com-
paring CMS against a reference simulator. Another is com-
paring two CMSes, running with different configuration pa-
rameters. CMS on the fast VLIW simulator is faster than the
reference simulator, and the nexus stops on any divergence
between the two simulators, no matter which one made the
error. Thus, CMS vs. CMS runs a suite of configurations
more quickly than running against the reference. It is, how-
ever, no substitute for execution against a reference simula-
tor, as CMS vs. CMS misses bugs that appear in both.

Hardware emulation was planned from the start. FPGA
emulators have limited gate counts, but Crusoe is simple
enough to emulate the whole core. The emulator is in prin-
ciple built from the same sources as real hardware, but in
practice it is a lot of work to excise the core and to build
an emulator framework to run it. Several emulator systems
were purchased, one because an earlier vendor was acquired
and that emulator line was abandoned. The emulation effort
was then restarted on a new system. Also, emulation was a
second-tier priority, and it was only after Crusoe shipped
there was a person dedicated to emulation. Thus, the emu-

13



lator finally ran Crusoe only after hardware shipped, and it
found only a few bugs. However, the effort was worthwhile
as it made emulation available early in Efficeon develop-
ment, where it found difficult and critical bugs.

Development was helped greatly by adding debugger
features aggressively. Adding them as needed is too late!
You want them already working and debugged when you
are staring at an error, especially errors which are time-
consuming to reproduce, or which appear erratically. For
example, downloading cache contents and tags was added
before it was needed. One hard-to-reproduce failure was
positively identified as a hardware bug by dumping and ex-
amining cache tags, noting no sequence of valid instructions
could give rise to the observed state, and noting the cache
download code was simple and regular, thus unlikely to
have bugs. This was a key to isolating the failure. We never
saw the “must be hardware” corruption again, so had we
added cache dumping only as needed, it might have taken
weeks more to encounter another definitive case.

A few debugging stories may be of interest. One bug
caused crashes roughly once a day per machine. A week
of experimenting showed a corner case that failed within 5
minutes about 30% of the time. Crash analysis suggested
the failure was related to an exception, but the failure case
was during program start when exceptions were frequent.
Unfortunately, we did not have application or OS sources,
so could not readily study or instrument failing target code.
We concluded it was a hardware bug, most likely in one of
two units, but studying the circuits showed no errors. Fur-
ther study showed a particular register had a value equal to
another register – with no copy between them, but always
a restarted chain pull when duplication occurred. Further
hardware study showed the two units treated a shared bus
signal differently: in some cases there was a one-cycle win-
dow where one unit was reading the signal, but the other
was not driving it! There was only slow progress between
initial discovery of the 5-minute test case and the final dis-
covery of the mis-copied value. That discovery led within
60 minutes to positive identification of the bug’s root cause.

Another error caused failures about 15 minutes before
the end of a 24-hour stress test. Unfortunately, no “fast”
case was discovered. Application and OS sources were
not available. After about two weeks of study – about a
dozen runs per machine – evidence pointed to CMS code
that seemed common to all failures. Inspection revealed a
bug where interrupts were supposed to be disabled across a
sequence, but the disable was handed off between two inter-
rupt disable mechanisms, and a bug reenabled interrupts be-
tween two instructions. A pending interrupt aborted execu-
tion to deliver the interrupt, leaving inconsistent state.Why
did it fail only after 24 hours? The race was in a special-
purpose code generator; the first time it ran was during OS
boot when interrupts were also disabled at the x86 level;

after almost 24 hours, the translation was flushed and the
code generator ran again, this time with interrupts enabled.
A “zero-cycle” interrupt checker was added to SPAM.

A third bug appeared during testing of an isolated
change. Ad-hoc testing repeatedly led to a hard crash during
launch of an ordinary program. Study showed the failure
was after a triple-nested nucleus fault that was not related
to the change or application, but happened when starting
the test in a certain time window after OS boot. Most triple
faults abort the current translation. This case resumed the
faulting instruction, and an error in triple-nested fault han-
dling led to corrupted target state and a crash. Two people
studying the failure found three distinct cut-and-paste errors
in 20 lines of assembly that had been stable for months. One
person found one error by stepping with the debugger and
noting a value saved was different than the value restored –
yes, the debugger can single-step through nested fault han-
dlers. The other person inspected the code and found two
more errors.

These last two bugs might have been found by inspec-
tion. Software inspection has been studied widely and con-
sistently beats other strategies for finding bugs at the low-
est cost. However, inspection is not used heavily at Trans-
meta, in part because it is not directly automatable. But
despite the great success of automated testing, various “in-
spectable” bugs still survived long enough to demand ar-
duous debugging. Programmers often resist classic inspec-
tion due to meetings and because it gates and thus delays
checkin. However, inspection via e-mail is now common
and has shown good results; and much as debug testing af-
ter checkin is common practice, inspection after checkin is
also reasonable.

It is always fun to demonstrate virtualization.
Shade [CK95] was once used to run nested Shades.
For example, a SPARC running a Shade that was running
Shade that was running Shade that was running Shade
that was running a “Hello world” program (slowly). At
Transmeta, various similar configurations were run using
CMS and the fast VLIW simulator. For example, an x86
running the fast VLIW simulator running CMS running the
fast VLIW simulator running CMS booting an OS (slowly).
Or, real VLIW hardware running CMS running the fast
simulator, running CMS, booting an OS (also slowly).

6. Conclusion

Transmeta’s Crusoe seamlessly runs nearly all workloads,
and demonstrates a CPU based on dynamic translation is
practical. Crusoe’s hardware is small and simple, using
software for corner cases. This combination allowed a small
team to produce a reliable x86-compatible CPU in just a few
years. This paper briefly summarizes some of the designs,
experiences, and lessons of development.

14



Acknowledgments

Thanks to Bob Cmelik, Ron Maeder, and Stephen Russell
for reviewing and improving earlier drafts of this paper and
to Bob Cmelik for research assistance. Thanks also to Jim
Hunt for reviewing a near-final draft.

References

[Aga91] R. K. Agarwal. 80x86 architecture & programming, Vol-
ume II: architecture reference. Prentice Hall, 1991.

[AK04] H. P. Anvin, D. Keppel. Method and apparatus for han-
dling nested faults. U.S. Pat. 6,829,719, issued 2004.

[BAB+03] J. Banning, H. P. Anvin, R. Bedichek, G. Rozas, A.
Shaw, L. Torvalds, J. Wilson. Translation consistency check-
ing for modified target instructions by comparing to original
copy. U.S. Pat. 6,594,821, issued 2003.

[BAG+01] J. Banning, H. P. Anvin, B. Gribstad, D. Keppel, A.
Klaiber, P. Serris. Fine grain translation discrimination. WIPO
#WO 01/027743, issued 2001. Also as U.S. Pat. 6,363,336,
issued 2002.

[BCH03] J. Banning, B. Coon, E. Hao. Link pipe system for stor-
age and retrieval of sequences of branch addresses. U.S. Pat.
6,640,297, issued 2003.

[BCT+03] J. Banning, B. Coon, L. Torvalds, B. Choy, M. Wing,
P. Gainer. Fast look-up of indirect branch destination in a dy-
namic translation system. 6,615,300, issued 2003.

[BKK+03] P. Boyle, D. Keppel, A. Klaiber, E. Kelly. Software
direct memory access. U.S. Pat. 6,668,287, issued 2003.

[BKB05] R. Bedichek, D. Keppel, J. Banning. Interpage prologue
to protect virtual address mappings. U.S. Pat. 6,845,353, is-
sued 2005.

[Bro75] F. Brooks. The mythical man-month. Addison-Wesley,
1975.

[CDE+00] R. Cmelik, D. Ditzel, E. Kelly, C. Hunter, D. Laird,
M. Wing, G. Zyner. Combining hardware and software to pro-
vide an improved microprocessor. U.S. Pat. 6,031,992, issued
2000.

[Cla91] D. W. Clark. Large-scale hardware simulation: model-
ing and verification strategies. Chapter 9, “CMU computer
science: a 25th anniversary commemorative”, R. Rashid, ed.
ACM Press/Addison-Wesley, 1991, pp. 219-234

[CK93] R. Cmelik, D. Keppel, Shade: a fast instruction-set simu-
lator for execution profiling. Sun Microsystems Laboratories,
Inc. TR SMLI 93-12; also University of Washington Depart-
ment of Computer Science & Engineering TR 93-06-06.

[CK94] R. Cmelik, D. Keppel, Shade: a fast instruction-set simu-
lator for execution profiling, SIGMETRICS 1994.

[CK95] R. Cmelik, D. Keppel, Shade: a fast instruction-set sim-
ulator for execution profiling. Chapter 1, “Fast simulation of
computer architectures”, T. Conte & C. Gimarc eds. Kluwer,
1995.

[CDS03] B. Coon, G. D’Souza, P. Serris. Pipeline replay support
for multi-cycle operations wherein all VLIW instructions are
flushed upon detection of a multi-cycle atom operation in a
VLIW instruction. U.S. Pat. 6,604,188, issued 2003.

[CKB01] B. Coon, D. Keppel, C. Price. Programmable event
counter system. WIPO #WO 01/27873, issued 2001. Also as
U.S. Pat. 6,356,615, issued 2002.

[CK04] B. Coon, D. Keppel. Use of enable bits to control execu-
tion of selected instructions. U.S. Pat. 6,738,892, issued 2004.

[DGB+03] J. Dehnert, B. Grant, J. Banning, R. Johnson, T.
Kistler, A. Klaiber, J. Mattson. The Transmeta code morphing
software: using speculation, recovery, and adaptive retransla-
tion to address real-life challenges. CGO 2003, pg. 15-24.

[DS84] L. P. Deutsch, A. M. Schiffman, Efficient implementation
of the Smalltalk-80 system. POPL 1984, pg. 297–302.

[KF03] M. Kanellos, M. J. Foley. Transmeta to help AMD push
into servers. CNET News.com 2001/01/03.

[KCW96] E. Kelly, R. Cmelik, M. Wing. Memory controller for
a microprocessor for detecting a failure of speculation on the
physical nature of a component being addressed. U.S. Pat.
5,832,205, issued 1998.

[KCW00] E. Kelly, R. Cmelik, M. Wing. Translated memory pro-
tection apparatus for an advanced microprocessor. U.S. Pat.
6,199,152, Issued March 2001.

[KW99] E. Kelly, M. Wing. Host microprocessor with appara-
tus for temporarily holding target processor state. U.S. Pat.
5,958,061, issued 1999.

[KCB01] D. Keppel, R. Cmelik, R. Bedichek. Method and appa-
ratus for maintaining context while executing translated in-
structions. WIPO #WO 01/27741, issued 2001. Also as U.S.
Pat. 6,415,379, issued 2002.

[Kep09] D. Keppel. How to detect self-modifying code during
instruction-set simulation. 2009 workshop on architectural
and microarchitectural support for binary translation, 36th
annual international symposium on computer architecture.
Austin, TX.

[KSD03] D. Keppel, P. Serris, G. D’Souza. Check instruction and
method. U.S. Pat. 6,513,110, issued 2003.

[KBK99] A. Klaiber, R. Bedichek, D. Keppel. Method and ap-
paratus for correcting errors in computer systems. U.S. Pat.
5,905,855, issued 1999.

[Kla00] A. Klaiber. The technology behind Crusoe pro-
cessors, 2001/01. From archive.org as of 2009/03, for
www.transmeta.com/crusoe/download/pdf/crusoetechwp.pdf
as of 2001/06.

15



[HAC+06] S. Halepete, H. P. Anvin, Z. Chen, G. D’Souza, M.
Fleischmann, K. Klayman, T. Lawrence, A. Read. Adaptive
Power Control. U.S. Pat. 7,100,061, issued 2006.

[Loc87] B. Locanthi, Fast BitBlt with asm() and CPP. European
Unix Users Group Conference, 1987/09.

[May87] C. May. Mimic: a fast System/370 simulator. SIGPLAN
’87 Symposium on Interpreters and Interpretive Techniques.
1987/06.

[RHK07] A. Read, S. Halepete, K Klayman. Saving power when
in or transitioning to a static mode of a processor. U.S. Pat.
7,260,731, issued 2007.

[RDD+04] G. Rozas, D. Dunn, D. Dobrikin, A. Klaiber, D.
Nelsen. Method and apparatus for emulating a floating point
stack in a translation process. U.S. Pat. 6,725,361, issued
2004.

[RDP06] G. Rozas, G. D’Souza, C. Price, P. Serris. Method and
apparatus for enhancing scheduling in an advanced micropro-
cessor U.S. Pat. 7,089,404, issued 2006.

[Shi97] A. Shilov, “Transmeta quits microprocessor
business”, Xibt Laboratories, 2007/07/02, from
http://www.xbitlabs.com/news/cpu/display/20070207230938.html
as of 2009/05.

[TA05] L. Torvalds, H. P. Anvin. Method of determining a mode
of code generation. U.S. Pat. 6,880,152, issued 2005.

[TK01] L. Torvalds, D. Keppel. Controlling instruction trans-
lation using dynamic feedback. WIPO #WO 01/27767 A1,
issued 2001. Also as “System for using rate of exception
event generation during execution of translated instructions
to control optimization of the translated instruction”. U.S. Pat.
6,714,904, issued 2004.

[WD00] M. Wing, G. D’Souza. Gated store buffer for an ad-
vanced microprocessor. U.S. Pat. 6,011,908, issued 2000.

[WK99] M. Wing, E. Kelly. Method and apparatus for alias-
ing memory data in an advanced microprocessor. U.S. Pat.
5,926,832, issued 1996.

16


