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ABSTRACT

Shade is an instruction-set simulator and custom trace generator. Application programs are executed
and traced under the control of a user-supplied trace analyzer. To reduce communication costs, Shade
and the analyzer are run in the same address space. To further improve performance, code which simu-
lates and traces the application is dynamically generated and cached for reuse. Current implementa-
tions run on SPARC systems and, to varying degrees, simulate the SPARC (Versions 8 and 9) and
MIPS I instruction sets. This paper describes the capabilities, design, implementation, and performance
of Shade, and discusses instruction set emulation in general.

Shade improves on its predecessors by providing their various tracing capabilities together in a single
tool. Shade is also fast: Running on a SPARC and simulating a SPARC, SPEC 89 benchmarks run
about 2.3 times slower for floating-point programs and 6.2 times slower for integer programs. Saving
trace data costs more, but Shade provides fine control over tracing, so users pay a collection overhead
only for data they actually need. Shade is also extensible so that analyzers can examine arbitrary target
state and thus collect special information that Shade does not “know” how to collect.

1. Introduction

Shade simulates (emulates) a processor, and is used to execute and trace programs. Today, Shade runs on SPARC
[SPARC8] systems to trace SPEC [SPEC] benchmarks to help build better SPARC hardware and software. Shade
cannot yet run operating system code nor multiprocessor applications.

Users write programs, called analyzers , which call Shade functions to simulate and trace applications , usually
benchmarks. The most popular analyzers simulate caches and microprocessor pipelines.

Tracing in Shade is programmable and permits per-instruction access to the state (registers and memory) of
the simulated program. Trace information flows from Shade to the analyzer through memory instead of pipes or
files. Shade generates traces quickly and the level of tracing detail can be changed while the application is being
simulated. Thus, Shade’s traces can be recreated on demand, avoiding the processing and storage costs of conven-
tional traces. When conventional traces are desired, it is straightforward to write Shade “analyzers” that generate
traces in arbitrary formats.

The system where Shade and the analyzer run is the host system . The system where the application runs is
the target system . The target system need not exist; through simulation, Shade offers applications a virtual target
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system (virtual machine). The virtual target may be an incomplete model of the target; for example, Shade does not
yet simulate privileged instructions.

Shade uses dynamic compilation to increase simulation performance. At run time, application code fragments
are compiled into special-purpose host machine code fragments called translations. Translations are executed
directly on the host system to simulate and trace the application code. Translations are cached for later reuse to
amortize compilation costs.

The translation that Shade compiles for an application instruction is essentially an optimized, in-line expan-
sion of the code a conventional simulator would execute to simulate and trace the same instruction. Some of the
work that a conventional simulator must do each time an instruction is simulated, such as fetching and decoding the
application instruction, is instead done once by Shade when the translation is compiled. Compiling application in-
structions in groups provides additional optimization opportunities. For example, virtual application state that
would normally be stored and loaded between simulating two application instructions can instead remain in host
scratch registers.

Often, the host system is used directly to minimize simulation costs. For example, a target add instruction that
sets condition codes can often be simulated with a host instruction that does just the same. This is more efficient
than first performing an add, then computing the individual target condition code values based on the target opera-
tion, operands and results.

This paper is mostly about the design, implementation, and performance of Shade. The use of Shade is
described elsewhere [Cmelik93b, Cmelik93c]. Unless otherwise noted, we are describing the version of Shade which
runs Version 8 SPARC applications on Version 8 SPARC hosts.

2. User Interface

This section gives a brief tour of the Shade user interface, as seen by the Shade analyzer writer.

2.1. Loading

The function shade_load loads a new application program for simulation and tracing. The arguments to the
function are the application program file name, command line argument list, and environment variable list.
shade_load reads the text and data segments from the program file, allocates and clears a BSS (uninitialized
data) segment, and allocates a stack, which is initialized from the command line arguments and environment.

Once the application is loaded, the analyzer is allowed to make certain system calls in the context of the appli-
cation program. For example, the analyzer can make calls that redirect the application’s I/O.

Analyzers can (sequentially) simulate multiple applications. This allows analyzers to perform the otherwise
painstaking process of summarizing results for multiple-command benchmarks.

2.2. Simulating and Tracing

The function shade_run is called with an array of trace records and the array size. shade_run simulates the
application while filling in trace records. It returns the number of instructions traced, which may be less than the
number of instructions simulated. Zero is returned when the application has terminated.

Shade provides analyzers with control over tracing, so analyzers only pay for the trace data they want. Shade
can directly record the following trace information:

• instruction address

• instruction text

• decoded opcode value

• effective address: data address for loads and stores, target address for control transfer instructions

• branch taken flag

• annulled (squashed) instruction flag

• values of integer and floating point registers used in the instruction; source register values are recorded before in-
struction simulation, destination registers after



The analyzer specifies which of these values should be recorded for each opcode. For example, an analyzer
that simulates instruction and data caches can direct Shade to record instruction addresses and the annulled instruc-
tion flag for all instructions, plus effective memory addresses for loads and stores.

Shade knows how to gather the trace information listed above. Analyzers can gather additional information,
such as special purpose register values, by supplying functions that are called just before or just after an application
instruction is simulated. Different trace functions may be specified for different opcodes. Trace functions are not
called for annulled instructions.

Each trace function is called with two arguments. The first is a pointer to the instruction’s trace record, which
may be used to store information collected by the trace function. The same trace record also serves to provide the
trace function with the standard trace information described above. The second argument to the trace function is a
pointer to the application’s current virtual state structure, which contains the application’s current virtual register
values. The trace function may also access the application’s “virtual” memory.

User trace functions can amend trace records but can neither create nor destroy them. User trace functions
can alter the application’s state, but doing so is neither recommended nor reliable.

Analyzers can enable and disable tracing according to instruction address.

The trace control configuration may be changed when Shade is not running the application (i.e. outside
shade_run). This level of control is enough to allow long applications to be sampled, or completely analyzed in
stages, with separate stages run in parallel by separate Shade invocations to reduce run time.

Sometimes it is desirable to regain control from shade_run before it has filled the trace buffer. For exam-
ple, the user may wish for shade_run to return immediately before or after running an application system call.
Yet if tracing is minimal, the entire application may be run in a single shade_run call. An analyzer can enable
tracing1 for all instructions, and set the trace buffer size to one instruction. Control then returns to the analyzer after
running each application instruction. This is not very efficient, though, due to the overhead of switching between
the analyzer and the application.

Conventional debuggers suggest several control mechanisms, including instruction breakpoints which would
cause shade_run to stop before or after application instructions by opcode or address, and data breakpoints
which would cause shade_run to stop before or after loading or storing data at user specified addresses. More
generally, the user could supply functions which would be called during simulation, and, based on the current state
of the application, decide whether shade_run should stop. None of these mechanisms are currently implemented
in Shade.2

It would also be useful to allow user simulation functions, which would let the user modify or extend the base
instruction set provided by Shade. No such facility is implemented in Shade.

3. Implementation

This section describes some of Shade’s implementation details, especially those related to simulating and tracing ap-
plication programs.

3.1. Simulating and Tracing

The function shade_run is responsible for simulating and tracing application code. At its heart is a small main
loop (see Figure 1) that finds and calls a translation corresponding to the current target instruction. The translation
is built by cross-compiling the target instruction into host machine code. The translation simulates the target in-
struction, updates the target PC, optionally records trace information, and returns to the main loop. In practice, each
translation simulates several target instructions before returning to the main loop.

The main loop, translations, and most utility functions which are called by the translations, all share a com-
mon register window and stack frame. Several host registers are reserved for special purposes:

1. Note that tracing can be “enabled” even if no trace data is actually recorded in the trace buffer entries.

2. A Shade analyzer based on the GNU debugger gdb [Stallman87] has been developed for Version 9 SPARC software development [Evans92].
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initialize registers

continue1:
sll %vpc,..., %l0 ! hash application pc ...
srl %l0, ..., %l0 ! ...
sll %l0, ..., %l0 ! ... into tlb offset
ldd [%tlb + %l0], %l0 ! tlb lookup (loads %l0 and %l1)
cmp %vpc, %l0 ! tlb hit?
be,a run
mov %l1, %o0 ! translation address
clr %o7 ! no chaining

continue2:
save some registers
mov %o7, %o1 ! chaining address
call shade_trans ! returns translation address
mov %vpc, %o0
restore saved registers

run:
check for signals
jmpl %o0, %g0 ! jump to translation
nop

eot:
save some registers and return

Figure 1. Simulator main loop

• pointer to application’s virtual state structure (referred to in code examples as vs)

• base address of application’s memory (vmem)

• application’s virtual program counter; this is part of the virtual state, but is used enough to warrant its own host
register (vpc)

• pointer to current trace buffer entry (tr)

• number of unused trace buffer entries (ntr)

• pointer to TLB (tlb)

Shade locates translations using a table called the Translation Lookaside Buffer (TLB). The TLB associates
application instruction addresses with corresponding translation addresses. The main loop does a fast, partial TLB
lookup. If that fails, the function shade_trans performs a slower, full TLB lookup, and if that fails, compiles a
new translation and updates the TLB.

Shade then checks for pending signals that need to be delivered to the application. Depending on how the ap-
plication wishes to handle the signal, Shade may terminate the application at this point, or arrange for invocation of
an application signal handler. In the latter case, Shade continues simulating and tracing, but now in the
application’s signal handler. This process is repeated recursively if another signal arrives while in the application
signal handler.

Translations do not return in normal fashion. Instead, they use call instructions to return to one of three
points in or about the main loop: eot, continue1, or continue2.3 Translations transfer control to eot when
the trace buffer space is exhausted. Translations transfer control to continue1 or continue2 to pass control to
the next translation via the main loop. The two return points are used by the translation compiler to implement an
optimization called translation chaining.

3. Control transfer is similar to a continuation-passing style, but continuations are compiled into each translation.
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3.1.1. Translation Chaining

Often, the execution of one translation always follows that of another. The two translations, predecessor and suc-
cessor, can be directly connected (chained) to save a pass through the main simulator loop.

When the successor translation is generated first, the predecessor translation is compiled with a branch to the
successor. Otherwise the predecessor translation is compiled with a call instruction to transfer control to
continue2 in the main loop. The call instruction saves its own address, which is later passed to
shade_trans. shade_trans generates the successor translation, then overwrites the predecessor’s call with
a branch to the successor, thus chaining the two translations.

Translations for conditional branches are constructed with two separate exits instead of a single common exit,
so that both legs may be chained.

Translations for register indirect jumps and software traps (which might cause a control transfer) cannot be
chained since the successor translation may vary from one call to the next. For these translations, control transfers
to continue1 in the main loop.

Using the continue1 return point is more efficient if the next translation has already been generated and
appears in the TLB. Using continue2 is more efficient when the partial TLB lookup following continue1
would fail and control would fall through to continue2 anyway.

3.1.2. Translations

Application instructions are typically translated in chunks which extend from the current instruction through the
next control transfer instruction and accompanying delay slot. Translation also stops at tricky instructions such as
software trap and memory synchronization instructions.

Shade arbitrarily limits the number of application instructions per translation (to 1024) in order to simplify
storage allocation. The user’s trace buffer size also limits translation size. Therefore, a translation may represent
more or less than one basic block of application code, and one fragment of application code may be simultaneously
represented by more than one translation. The TLB effectiveness is reduced when there are fewer application in-
structions per translation, or when there are multiple translations for the same application instruction.

Each translation may be broken down into three sections: a prologue, a body with a fragment for each appli-
cation instruction, and an epilogue.

3.1.3. Translation Prologue

The translation prologue (see Figure 2) allocates trace buffer space for the translation. If there is not enough space,
the full-buffer translation return is taken. Prologues are generated only for translations that trace instructions.

Analyzers control the tracing of annulled instructions. When annulled instructions are untraced, the required
amount of trace buffer space is not known until the translation is run. For these translations, the prologue allocates
enough space to trace the potentially annulled instruction, and the translation body makes the appropriate adjustment
if the instruction is annulled.

prologue:
subcc %ntr, count, %ntr
bgeu,a body
nop ! hoist (replace) from body
call eot ! full-buffer return
add %ntr, count, %ntr

body:

Figure 2. Translation prologue

The trace space requirements for each translation might instead have been saved in a data structure, and tested
by the main loop. This would save the code space now used for translation prologues, but would require executing
additional instructions to address and load count , and would be inconsistent with translation chaining in which
translations branch to each other, circumventing the main simulator loop.



- 4 -

Here and elsewhere, the translation compiler hoists the target of a branch or call instruction into the delay slot
to replace the nop instruction which was originally generated for lack of anything better. The branch or call in-
struction is then updated to target the instruction following the original target. Control transfer instructions are not
hoisted.

3.1.4. Translation Body

The translation body contains code to simulate and optionally trace each application instruction. Simulation consists
of updating the virtual state (registers plus memory) of the application program. Tracing consists of filling in the
current trace buffer entry and advancing to the next.

3.1.4.1. Simulation

Figure 2a shows a sample application instruction, and Figure 2b shows the code generated to simulate it.

add %r1, %r2, %r3

Figure 2a. Sample application code

ld [%vs + vs_r1], %l1
ld [%vs + vs_r2], %l2
add %l1, %l2, %l3
st %l3, [%vs + vs_r3]
inc 4, %vpc

Figure 2b. Translation body (no tracing)

The translation body first loads the contents of application registers r1 and r2 from the application’s virtual
state structure into host scratch registers l1 and l2. Next, the translation performs the add operation. Then, the
translation writes the result in host scratch register l3 back to the virtual state structure location for application re-
gister r3. Finally, the translation updates the application’s virtual PC.

The code that is generated to actually perform the application operation is very often one and the same in-
struction, but with different register numbers. Where the host machine is a poor match to the virtual target machine,
or where we wish to virtualize the target machine operations, several instructions, or even a call to a simulation
function may be used. At the other extreme, no instructions need be generated to simulate useless application in-
structions (e.g. nop).4

Application memory addresses must be translated for loads, stores, and other instructions which access
memory. Translation is performed by adding the application memory address to the offset base address , stored in
host register %vmem. The same offset applies to all application memory address translations.

Note that SPARC supports both register+register and register+immediate addressing modes for memory
operations. Often (roughly 30% of the time) one of the target instruction’s address operands is zero, and can be re-
placed by %vmem, which saves an add instruction.

Conceptually, the virtual PC is updated for each application instruction as shown here. In practice, it is only
updated in the translation epilogue, or as needed in the translation body for tracing application instruction addresses.

A Delayed Control Transfer Instruction (DCTI) is a control transfer instruction such as a branch, jump, or
call instruction, that takes effect only after the dynamically following instruction (which is called the delay slot) has
been executed. In principle, Shade must maintain both a virtual PC and a virtual NPC (next PC) in order to simulate
DCTIs. In practice, Shade is usually able to translate and simulate DCTIs in tandem with the statically following in-

4. Shade assumes application nops serve a useful purpose; they are elided only when other instructions, such as simulation or tracing code, are
available to replace them.
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struction, and the NPC is maintained implicitly as PC+4. When the delay slot is itself a DCTI, or when simulation
must be suspended between the DCTI and its delay slot, Shade must simulate the NPC in order to correctly follow
the control flow. In these cases, Shade generates the less efficient Shadow translations, which are described below.

3.1.4.2. Tracing

Figure 2c shows the code generated to simulate and partially trace the sample application code. Note that tracing re-
quirements may vary from one application instruction to the next. The tracing code that is generated varies accord-
ingly.

st %vpc, [%tr + tr_pc] ! trace instruction address
set 0x86004002, %o0
st %o0, [%tr + tr_iw] ! trace instruction text
ld [%vs + vs_r1], %l1
ld [%vs + vs_r2], %l2
st %l1, [%tr + tr_rs1] ! trace 1st source register
st %l2, [%tr + tr_rs2] ! trace 2nd source register

mov %vs, %o1
call pre-instruction trace function
mov %tr, %o0

add %l1, %l2, %l3
st %l3, [%vs + vs_r3]
st %l3, [%tr + tr_rd] ! trace destination register

mov %vs, %o1
call post-instruction trace function
mov %tr, %o0

inc 4, %vpc
inc trsize, %tr ! advance in trace buffer

Figure 2c. Translation body (some tracing)

Instruction trace records have two parts. In the first part, Shade stores trace information it knows how to col-
lect directly. This information is at fixed offsets (tr_pc, tr_rs1, etc.) from the beginning of the trace record.
Shade stores some adjacent components with a doubleword store instruction, so trace records must be doubleword
aligned.

User trace functions may record information in the second part of the trace record. The analyzer specifies an
overall (first plus second part) trace record size (trsize), which is used to advance the trace buffer pointer.

One feature/kludge is that the first part of the trace record only needs to be long enough to hold the trace in-
formation that the analyzer wants Shade to record directly. With this in mind, more popular trace information (like
instruction address and text) is located nearer the beginning of the trace record. A more general approach would al-
low the user to specify the trace component offsets within the trace structure. This approach would complicate the
user interface but have negligible impact on compilation and execution.

The trace buffer entry counter (ntr) is decremented once, in the epilogue. Though an increment for the trace
buffer pointer (tr) is shown here, it too is generally updated once in the epilogue. The host SPARC store instruc-
tions have a 13-bit indexing offset, so 212 / trsize trace records are immediately accessible (for simplicity, Shade
uses only positive indexing offsets). When greater range is required, the trace buffer pointer is updated by the body
as needed.

When a user trace function is called, live application state is first returned to the virtual state structure for use
by the trace function. An exception is the virtual PC, which is available in the trace buffer entry.
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3.1.5. Translation Epilogue

The translation epilogue (see Figure 3) updates the virtual state structure. The epilogue saves host registers that
hold modified virtual register values. If the virtual condition codes have been modified, they too must be saved un-
less, as discussed later, the save can be avoided. The epilogue also updates the trace buffer registers %tr and %ntr
if necessary.

Finally, the epilogue returns control to the main loop, or, if the translation is chained, branches directly to the
translation which corresponds to the updated virtual PC value. The virtual PC remains in a host scratch register
across translation calls. Upon return from a translation, it contains the address of the next application instruction to
be executed.

epilogue:
update virtual state structure
update virtual PC

inc count ∗ trsize, %tr
call continue1 or continue2 ! return to main loop
nop

Figure 3. Translation epilogue

The nop at the end of the epilogue may be replaced by hoisting when the translation is chained.

3.2. Shadow Translations

Shadow translations5 are generated instead of ordinary translations under the following circumstances:

1. to handle DCTI couples

2. to handle any DCTI when the analyzer has limited the trace buffer size to a single entry

3. to permit synchronous signal handling when an application instruction might trap, and trapping should cause the
application’s signal handler to be simulated “immediately”

Shadow translations maintain a virtual NPC and an annul-pending flag in addition to a virtual PC. The virtual
PC value is set from the virtual NPC value. The new virtual NPC value is set to PC+4 for instructions which don’t
cause a control transfer; to the target address for call, jmpl, and taken branches; or to the fall-through address for
untaken branches. The annul-pending flag is set when the next instruction should be annulled instead of executed.

The SPARC architecture specifies that executing a conditional branch with a DCTI in its delay slot has
undefined behavior. For these illegal DCTI couples, Shade silently mimics the “obvious” behavior used in most of
today’s SPARC implementations.

Since Shadow translations may have different successors from one invocation to the next, they cannot be
chained. Ordinary translations, though, can be chained to Shadow translations. Likewise, modified virtual condi-
tion codes must always be saved in Shadow translation epilogues because Shade cannot determine whether the ap-
plication will set them before using them.

3.3. Translation Cache (TC)

The TC is the memory where translations are stored. In an earlier version of Shade the TC was organized as an ar-
ray of fixed sized entries, with one entry per translation and one translation per application instruction. The applica-
tion instruction address mapped directly to the corresponding TC entry.

The old organization was abandoned to allow multiple application instructions, variably traced, per transla-
tion. Now translations are simply placed in memory one after the other, irrespective of length, and the TLB associ-
ates the application instruction address with the corresponding translation address.

5. So called because they resemble the code used in Shadow, Shade’s predecessor.
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When more TC space is needed than is available, all entries in the TC are freed and the whole TLB is cleared.
Since this deletes useful translations, the TC is made large so that freeing is rare. Translation chaining makes other
freeing strategies tedious.

The TC and TLB are also flushed when there is any change in the tracing strategy, since tracing is hardcoded
into the translations. This is not expected to happen often.6

If the application uses self-modifying code, the TC and TLB entries for modified application code will be in-
valid after the modification. SPARC systems provide the flush instruction to identify code that has been
modified; many other systems provide equivalent primitives [Keppel91]. When an application flushes instructions,
Shade makes the corresponding translations inaccessible. Note that translations may be reached either through the
TLB or through translation chaining. If a flushed application instruction is later executed, a new translation for it is
compiled.

To simulate the first flush instruction, Shade frees the TC, flushes the TLB, and disables future translation
chaining. To simulate subsequent flush instructions, Shade flushes TLB entries which point to translations for the
flushed instructions. Since Shade does not maintain enough information to tell exactly which translations cover
which application instructions, TLB flushing is done conservatively, and some TLB entries will be needlessly
flushed.

Older SPARC systems with unified instruction and data caches will correctly execute self-modifying code
without the need for flush instructions. So applications exist (e.g. the dynamic linker) which don’t flush when
they modify code. By default, Shade makes TLB entries and chains translations only for application code inside the
(read-only) text segment. As a result, instructions such as the dynamic linker (loaded at run time) and the code it
loads are recompiled each time they are simulated. A Shade run-time option (-flushbench) may be specified to
indicate that the application executes flush instructions where it should.

There are two Shade run-time options which control when Shade itself uses flush instructions. By default,
Shade flushes all code that it generates or modifies. The first option (-noflush) tells Shade it need not execute
flush instructions. The second option (-flushp) tells Shade to execute a single flush instruction between
generating/modifying and executing an arbitrary amount of code.

Full flushing is required, e.g., for MicroSPARC which has split instruction and data caches and requires that
software maintain consistency. Full flushing is also required when running Shade on itself. Partial flushing may be
used, e.g., for SuperSPARC, which has consistent instruction and data caches, but which doesn’t check instructions
currently being executed against recently stored data.

3.4. Translation Lookaside Buffer (TLB)

The TLB is an array of lists of address pairs. Each pair associates an application instruction address with the
corresponding translation address.

To find a translation, Shade hashes the application instruction address to produce a TLB array index. This
TLB entry (address pair list) is then searched for the given application address.7 If the search succeeds, the list is
reorganized (if necessary) so that the most recently accessed address pair is at the head of the list. If the search
fails, a translation is generated, and a new address pair is placed at the head of the list.

Lists are actually implemented as fixed length arrays, which makes the TLB simply a two-dimensional array
of address pairs. The TLB may also be thought of as N-way set associative, where N is the list length. Since ad-
dress pair lists are of fixed length, it is possible for address pairs to be pushed off the end of a list and lost, which
makes the translation inaccessible via the TLB. The TLB is large enough that this is not a problem. The translation
will likely also still be accessible via chaining from other translations.

3.5. Optimizing Translations

Shade uses an ad hoc code generator which generates code in roughly one pass. Some minor backpatching is later
performed to chain translations and replace nops in delay slots. The resulting code could no doubt be improved,

6. Retranslation overhead due to trace control changes could be reduced by caching the translation state (TC, TLB, etc.) by trace control strategy.

7. Recall that the main simulator loop only checks the first member of this list.
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but the time spent in the analyzer usually dwarfs the time spent in code generation, simulation, and tracing com-
bined. A run-time code optimizer seems unjustified in this case; the cost and potential bugs of a run-time code op-
timizer should be seriously considered as well.

Optimization is more important when Shade is used for pure simulation with no tracing or analysis. A dif-
ferent tradeoff might be made between the cost of code optimization and the quality of optimized code.

3.6. Conflicts of Interest

The decision to simulate, trace, and analyze all in the same process leads to conflicts over the use of per-process
state and resources. Conflicts arise between the application program (i.e. the code generated by Shade to simulate
the application), the analyzer, and Shade (translation compiler, etc.). Conflicts are resolved in one or more of the
following ways:

1. Partition the resource (e.g. memory, file descriptors, signals). Part of the resource belongs to one contender, and
part to another. If necessary, interfaces are provided to hide the partitioning, and perhaps provide some protec-
tion.

2. Time multiplex the resource (e.g. special purpose registers). Part of the time the resource belongs to one con-
tender and part of the time it belongs to another. Additional processing time and storage are required for swap-
ping.

3. Simulate (virtualize) the resource, invariably on behalf of the application (e.g. register windows). This is the
least efficient approach.

4. Unprotected sharing (e.g. current working directory). Changes made by either effect both. This is generally a
bad thing and the result of an incomplete implementation.

The following sections describe these approaches in more detail.

3.6.1. Memory

The virtual address space is partitioned. It is assumed that both the application and analyzer are free of bugs that
would cause untoward memory references.

The analyzer, including the Shade run-time routines, runs as an ordinary program in the lower end of
memory. shade_load places the application elsewhere in memory. The kernel picks the actual location for the
application given a maximum size estimate provided by shade_load.

The application stack is placed near the text segment, just below what would be application virtual memory
address 0. Thus, application stacks appear to the application as if they are located at the high end of memory. Ap-
plication stacks do not enjoy the automatic extension provided by UNIX to real stacks. At some cost, Shade could
perform this function.8 Instead, application stacks are just made large.

Application brk and sbrk system calls (which are called by malloc, etc.) are simulated by allocating
space following the application’s data and BSS segments.

All application memory addresses are offset by the same amount. Thus, once the addresses requiring transla-
tion have been identified, address translation itself is simple. Some places where address translation is required in-
clude:

• initialization of the application stack pointer and stack frame

• “fetching” application instructions during translation compilation

• simulation of application loads, stores, etc.

• simulation of register window overflow, underflow, and flush traps

• simulation of application system calls: arguments and return values may be addresses, and may point to data
structures containing addresses

8. Catching faults then extending the stack would be unwieldy, given the way signals are now handled, as there would be three potential con-
tenders for rights to SIGSEGV. Automatic stack extension otherwise would be acceptable.
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3.6.2. Registers

For each translation, host scratch registers are picked to represent target registers. Host register numbers then re-
place target register numbers in the translated application code. Host registers are lazily loaded from the virtual
state structure, then later lazily stored back, but no later than the translation epilogue.

The host registers cache virtual register values from one translated application instruction to the next in order
to reduce memory traffic to and from the virtual state structure. When there aren’t enough host registers to represent
all of the virtual registers used, host registers are reassigned pseudo-randomly.

Currently 15 integer and all 32 floating point host registers are used to hold virtual register values. On aver-
age,9 29% of application integer register reads require a prior load from the virtual state structure, and 58% of writes
require a store. For floating point benchmarks, 4% of floating point register reads require a prior load, and 30% of
writes require a store.

These numbers do not reflect the additional loads and stores that accompany calls to user trace functions
which expect to find the application register values in the virtual state structure.

Shade itself doesn’t perform many floating point operations while simulating or translating, so the virtual
floating point registers could (as they once were) be assigned on a long term basis (such as the duration of
shade_run, spanning many translations), instead of a short term basis (a single translation). But user trace func-
tions may wish to perform floating point operations, and may wish to find the virtual floating point register values in
the virtual state structure. The obvious compromise, using long term mapping only when no user trace functions
have been specified, is still under consideration.

Also under consideration is a similar scheme in which high use integer registers (e.g. the stack and frame
pointers) are mapped longer term.

Special-purpose registers such as the y multiply/divide register, and the fsr Floating-point State Register are
multiplexed. Swapping tends to be relatively infrequent because Shade does not use these registers as often.

3.6.3. Integer Condition Codes

The integer condition codes are multiplexed. As application code is compiled, Shade keeps track of whether or not
the host condition codes currently represent (contain) the virtual condition codes. Functions described below are
used to transfer host condition code values to or from the virtual state structure as necessary. Since these transfers
are expensive, attempts are made to limit them.

The condition codes are restored from the virtual state structure only if the application code uses the condition
codes before setting them. Here “use” of condition codes includes calls to user trace functions, which might wish to
read the condition codes from the virtual state structure. On average, the condition codes only need to be restored
for 18% of the application instructions which use them.

Condition codes are not always saved by the translation epilogue. Shade can sometimes determine that the
next application code to be executed will always set the condition codes before using them. On average, the condi-
tion codes only need to be saved for 7% of the application instructions which set them.

Shade’s condition code optimization is unsafe in one special case related to signal handling. When a signal is
delivered, the current condition code values are copied from the virtual state structure into a signal context structure.
This structure may be examined or modified by the signal handler. The condition codes are updated from this struc-
ture when the signal handler returns. Shade sometimes discards condition codes between translations, so values
copied into the signal context structure may be unreliable. Signal handlers usually ignore the saved condition codes,
because most asynchronous signals are delivered when the condition codes are already unpredictable. However, a
signal handler could use the saved condition codes (or, equivalently, set new condition code values in terms of the
old values), and in this special case the condition code optimization is unsafe. Shade’s -ssignal flag will ensure
that signal handlers receive correct condition code values, but it will also reduce performance. Note that condition
code restoration is reliable if the signal handler leaves by calling longjmp or siglongjmp.

Unfortunately, in Version 8 SPARC, user instructions cannot directly read and write the Processor State Re-
gister that contains the integer condition codes. Figure 4 shows a function which reads the condition codes by exe-

9. “On average” here and below means geometric mean of dynamically weighted values over the SPEC89 benchmarks.
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cuting conditional branches. Each conditional branch tests one bit in the host condition codes. If the bit is set, the
branch is taken, and an instruction in the delay slot records that the bit was set. If the bit is clear, the branch is not
taken, and the instruction in the delay slot is not executed.

shade_geticc:
clr %o0
bneg,a 2f ! if negative, assume Z==0
or %o0, 0x40, %o0 ! N - negative
be,a 2f
or %o0, 0x20, %o0 ! Z - zero

2: bvs,a 3f
or %o0, 0x10, %o0 ! V - overflow

3: bcs,a 4f
or %o0, 0x08, %o0 ! C - carry

4: retl %o7 + 8, %g0
stb %o0, [%vs + vs_icc]

Figure 4. Saving condition codes

Since there are 4 condition code bits, there are a total of 16 possible condition code combinations. The condi-
tion codes are written by executing one of 16 code fragments10 which are specially designed to recreate the condi-
tion codes (see Figure 5). The value of the condition codes is used as an index into a table of code fragments where
each fragment is 2 instructions (8 bytes). The internal representation for the condition codes (established by
shade_geticc) was chosen to save a 3-bit shift in shade_seticc. Four of the condition code combinations,
those with both the zero and negative bits set, cannot be produced by user instruction sequences. If they are encoun-
tered by shade_seticc, Shade will terminate with a diagnostic.

3.6.4. I/O (File Descriptors)

File descriptors (small numbers returned by the kernel to represent open files or I/O devices) are partitioned between
the analyzer and application. Several file descriptor values are special: 0, 1, and 2 represent standard input, output,
and error output. Shade renumbers the application’s file descriptors so that the application sees the special values
even though Shade uses different values.

Shade maintains a table that associates virtual (application) file descriptors with real file descriptors. Shade
intercepts each application system call that uses or returns file descriptors, and performs renumbering and table up-
dates as needed. The file descriptor mapping mechanism is available to the analyzer so that it can conveniently con-
trol the application’s I/O.

Since Shade does not currently retain control across a successful application exec system call, there will be
no Shade around after the exec to renumber file descriptors. So prior to the exec, Shade moves the virtual file
descriptors to their real locations. Should the exec fail, the file descriptors are moved back. Shade should arrange
for analyzer files to be closed on application execs, and application files to be closed on analyzer execs, but
doesn’t. The analyzer can arrange this if necessary.

3.6.5. Signals

Signals can arise for a variety of reasons, and can be delivered either to the application or the analyzer. Signals may
also arrive at any time, during execution of Shade, the translations, or the analyzer. Note that in Shade, signals are
handled according to ownership rather than time of delivery or cause.

Shade does not reserve any signals, so an analyzer can handle any signal it wishes. Analyzers typically use
signals for checkpointing and sampling. All signal numbers are special, and analyzers and applications may use
some of the same signals (e.g. hangup, interrupt, alarm clock). Shade prevents applications from interfering with

10. The instruction sequences were discovered by brute force search of condition code setting operations and a small set of promising operand
values.
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shade_seticc:
ldb [%vs + vs_icc], %o0
set 1f, %o1
jmpl %o1 + %o0, %g0
sub %g0, 1, %o1

1:
retl; addcc %g0, 1, %g0 ! ----
retl; subcc %g0, %o1, %g0 ! ---C
retl; taddcc %g0, 1, %g0 ! --V-
retl; tsubcc %g0, %o1, %g0 ! --VC
retl; addcc %g0, 0, %g0 ! -Z--
retl; addcc %o1, 1, %g0 ! -Z-C
retl; tsubcc %o1, %o1, %g0 ! -ZV-
retl; taddcc %o1, 1, %g0 ! -ZVC
retl; addcc %g0, %o1, %g0 ! N---
retl; addcc %o1, %o1, %g0 ! N--C
retl; taddcc %g0, %o1, %g0 ! N-V-
retl; taddcc %o1, %o1, %g0 ! N-VC
ba badicc; nop ! NZ--
ba badicc; nop ! NZ-C
ba badicc; nop ! NZV-
ba badicc; nop ! NZVC

Figure 5. Restoring condition codes

the analyzer’s signal handling. Where possible, Shade arranges to do so in a way that the application doesn’t notice.

Shade intercepts sigvec system calls made by the analyzer and records the given signal number. The
analyzer then retains exclusive rights to that signal for the remainder of the analyzer run. All signal-related system
calls made by the application are intercepted. Shade silently subverts any application requests that would impact the
signal handling state (signal handler and flags, blocked signal mask, signal stack) of analyzer-owned signals.

Analyzer signals and their handling are usually invisible to the application, but they can interrupt an interrup-
tible application system call, even when the application has arranged for that signal to be blocked or ignored. Un-
fortunately, restarting the application system call would be difficult or impossible in most cases.

Signals destined for the application are delivered to a Shade signal handler that notes the signal, and returns
control to the interrupted instruction. Eventually, control returns to the main loop, which checks for pending sig-
nals. When the main loop detects a signal, it invokes the signal handler instead of the next instruction.

When a signal is delivered, chaining is turned off entirely to reduce the signal handling latency for future sig-
nals. The TC and TLB are flushed. Translation chaining is disabled so that a test for pending signals can be made
between each translation. A Shade run-time option (-asignal) allows the user to disable chaining from the be-
ginning to prevent a delay in handling the first signal to arrive.

Signals arising directly from the execution of an application instruction (e.g. loading or storing unmapped or
unaligned data, or division by zero) can often be handled correctly if they occur in Shadow translations. In these
cases, Shade will abort execution of the translation, redirect control to the main simulator loop, and signal handling
will proceed as described above. Otherwise, a diagnostic is printed for these signals and the faulting instruction is
re-executed, which causes the program to terminate since the signal that would be raised is blocked. A Shade run-
time option (-ssignal) causes Shade to always compile Shadow translations.

Shade ignores the execute permissions associated with application code in memory. If the application code is
unreadable, Shade will fault as it reads the code, as it attempts to compile a translation.
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3.6.6. Register Windows

SPARC’s windowed register file cannot be partitioned (some windows for the application, some for the analyzer) at
the user level. The register file could have been multiplexed at some cost involving system calls and/or window
overflow and underflow traps. The simplest solution seems to be to consign the host register file to Shade and the
analyzer, and simulate the register file as it is used by the application. It is particularly desirable to avoid application
window overflow and underflow traps if/when Shade is run on a bare machine with a kernel as the application.

Shade simulates a register file with one window. Therefore, every save causes an overflow and every
restore causes an underflow. Register values are transferred between the virtual state structure and the appropri-
ate save area on the application’s stack.

An interesting alternative might be to simulate a virtually infinite register file. In this case the virtual state
structure would be huge and no save instruction would cause an overflow, nor restore instruction an underflow.
However, we estimate that, on average, this scheme would save only about 0.2 host cycles per simulated application
instruction.

User code is rarely conscious of the number of register windows, but system code pays particular attention to
it. It is expected that if kernel applications are someday run under Shade, that the analyzer will be able to specify
the number of register windows.

3.6.7. Fork, Exec, and Wait

Shade handles an application fork system call by executing a fork system call. This produces two separate
processes, parent and child, each containing a copy of Shade, the analyzer, and the application.

In the parent process, a parent application process is simulated, traced, and analyzed; in the child process, a
child application process is simulated, traced, and analyzed. Unless other arrangements are made, the separate
copies of the analyzer cannot share information, and may conflict with each other. A typical problem is that each
copy of the analyzer writes results to the same file.

Application vfork system calls are converted to fork system calls, which may cause some applications to
fail under Shade.

Shade handles an application exec system call by executing that system call. Shade, the analyzer and the ap-
plication are all overwritten by the new application program. Shade might have arranged for a new copy of Shade
and the analyzer to be started to simulate, trace, and analyze the new application, but doesn’t. Or, Shade might have
arranged for the new application to overlay the old application (as if shade_load had been called), but doesn’t.
So the new application must be able to run native on the host system.

Shade handles an application wait system call by executing that system call. Both the application and
analyzer may have outstanding child processes. Unless the process is waited for by specific process ID, these
processes are indistinguishable and the analyzer may complete a wait for the application’s process, or vice versa.

One possible solution to this would be to intercept analyzer and application fork system calls and (in the
parent) record who made the call, along with the returned child process ID. Application and analyzer wait system
calls would also be intercepted. If, say, a wait made by the analyzer yielded information about an application’s
process, that information would be recorded against a future wait system call by the application, and the analyzer’s
wait would be retried. Integrating this scheme with SIGCH[I]LD signal handling might be messy.

3.6.8. Resource Limits

Shade simulates application getrlimit and setrlimit system calls to prevent the application from modifying
the analyzer’s resource limits (maximum CPU time, etc.). However, shade does not attempt to enforce the
application’s resource limits; Shade just maintains a copy of the analyzer’s resource limit values for the application
to manipulate.

Before Shade executes an application exec system call, the application’s resource limits are installed as the
real resource limits, except that Shade refuses to reduce the maximum (hard limit) value for any resource limit. If
the exec fails, the previous resource limits are reinstated.
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3.6.9. Other Conflicts

The following per-process state or resources are shared between Shade, the analyzer, and the application without
special handling.

• process ID and parent process ID

• real and effective user and group IDs, and supplementary group IDs; for simplicity and security, Shade refuses to
load setuid or setgid applications

• process group, TTY process group, session ID, and control terminal

• file creation mode mask

• current working directory and root directory

• scheduling priority

• interval timers

• resource usage (CPU time used, etc.)

• anything to do with System V IPC messages, semaphores, or shared memory

• ptrace flag

4. Performance

In this section we give measurements for various configurations running various programs. The standard or-
ganization used in many of the following tests is:

• The TC holds 220 instructions (4MB).

• The TLB contains 213 (8K) lines, each containing 4 address pairs (256KB).

The benchmarks used for this section are the SPEC89 001.gcc1.35 and 015.doduc benchmarks. They were
compiled using SPARC Compilers 1.0 with the options:

-cg89 -O4 -libmil -dalign

The tests were run on a SPARCstation 2.

Six Shade analyzers, each performing a different amount of tracing, were used:

icount0
no tracing, just application simulation (The application runs to completion in one call to shade_run.)

icount1
no tracing, just update the traced instruction counter (%ntr) to permit instruction counting

icount2
trace PC for all instructions (including annulled); trace effective memory address for non-annulled loads and
stores (This corresponds to the tracing required for cache simulation.)

icount3
same as icount2 plus instruction text, decoded opcode value, and, where appropriate, annulled instruction
flag and taken branch flag

icount4
same as icount3 plus values of all integer and floating point registers used in instruction

icount5
same as icount4 plus call an empty user trace function before and after each application instruction

The analysis performed by each of these analyzers consisted solely of counting the number of instructions ex-
ecuted. In a realistic analyzer, analysis would dominate the run time.

Figure 6 shows how much slower applications run under Shade than they run native (directly on given
hardware). The inst column shows the number of instructions that were executed per application instruction. In-
struction counts were gathered by running the Shade icount1 analyzer on Shade running the indicated analyzer
on the indicated benchmark. The time column shows the CPU (user + system) time ratio.
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________________________________________________________________________________
icount0 icount1 icount2 icount3 icount4 icount5

app
inst time inst time inst time inst time inst time inst time________________________________________________________________________________________________________________________________________________________________

gcc 5.51 6.13 5.85 6.60 8.84 14.32 13.50 21.71 15.51 31.21 63.74 84.17________________________________________________________________________________
doduc 2.75 2.84 2.94 3.14 5.52 8.78 9.44 14.03 11.45 24.06 36.25 60.30________________________________________________________________________________

Figure 6. Dynamic expansion: instructions and CPU time

Figure 7 shows how much larger dynamically (i.e. weighted by number of times executed) a translation is
than the application code it represents. The sizes are in instructions. Since portions of most translations are condi-
tionally executed, the translation code space expansion values shown in this table are typically larger than the exe-
cuted code expansion values shown in the previous table. For icount0 and icount5 on gcc , a larger share of
the instructions are executed outside of the TC in the translation compiler, simulation functions, and the analyzer.

______________________________________________________________________________________
input output size________________________________________________________________________app
size icount0 icount1 icount2 icount3 icount4 icount5____________________________________________________________________________________________________________________________________________________________________________

gcc 5.1 20.1 4.7x 25.5 6.2x 40.6 9.1x 66.8 14.8x 76.9 16.7x 192.8 39.9x______________________________________________________________________________________
doduc 12.5 33.2 4.1x 38.7 5.1x 73.2 8.0x 126.0 13.2x 152.5 15.1x 427.0 38.6x______________________________________________________________________________________

Figure 7. Code translation expansion

Figure 8 shows the percentage of total run time spent in various phases of execution. Compiler is the time
spent in the translation compiler. TC is the time spent executing code in the Translation Cache itself. Sim is the
time spent in functions which are called from the TC to simulate, or assist in simulating application instructions.
Analyzer is time spent in the user’s analyzer, including user trace functions which are called from the TC. This in-
formation was obtained with standard profiling (cc -p; prof). The standard TC and TLB size and organization
were used.

The time distribution is a factor of several things. Better optimization takes longer and produces faster run-
ning code, both of which increase the percentage of time spent in code generation. A small TC increases the fre-
quency with which useful translations are discarded. A small or ineffective TLB increases the frequency with
which useful translations are lost. Translations that collect a lot of information take longer to run, and thus reduce
the percentage of time spent in simulation functions, even though their absolute running time is unchanged. All of
the analyzers are trivial, though icount5 supplies null functions that are called before and after each application
instruction.

_________________________________________________________________________
app location icount0 icount1 icount2 icount3 icount4 icount5__________________________________________________________________________________________________________________________________________________

Compiler 8.77% 10.14% 5.82% 4.59% 3.86% 25.05%
TC 51.13% 52.56% 74.62% 82.22% 86.33% 61.26%
Sim 39.00% 36.09% 19.01% 12.83% 9.55% 4.97%

gcc

Analyzer 0.00% 0.03% 0.01% 0.00% 0.00% 8.61%_________________________________________________________________________
Compiler 0.22% 0.35% 0.16% 0.11% 0.08% 0.06%
TC 80.69% 81.56% 91.50% 95.20% 96.37% 87.87%
Sim 19.04% 17.97% 8.32% 4.67% 3.55% 2.11%

doduc

Analyzer 0.00% 0.07% 0.00% 0.00% 0.00% 9.96%_________________________________________________________________________

Figure 8. Run-time execution profile summary

Figure 9 shows the frequency of TC flushes. The frequency is a function of the TC size and indirectly a func-
tion of the rate at which translations are lost from the TLB. The data in Figure 9 was collected with varying TC
sizes and the standard TLB size and configuration. The standard configuration is shown in bold.

Figure 10 shows the TLB behavior under various configurations.

• Each program is run with the translation chaining optimization turned on and off. The Ch column contains “Y” if
translation chaining is turned on.
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_______________________________________________________________________
app TC size icount0 icount1 icount2 icount3 icount4 icount5______________________________________________________________________________________________________________________________________________

256KB 1338 1952 4120 10862 13801 110389
512KB 366 656 1344 2878 3582 20767

1MB 4 50 377 1060 1244 5306
2MB 0 0 5 197 317 1628

gcc

4MB 0 0 0 0 2 539_______________________________________________________________________
256KB 5 5 27370 159152 164258 261997
512KB 0 0 1 6123 10820 27332

1MB 0 0 0 1 1 10949
2MB 0 0 0 0 0 17

doduc

4MB 0 0 0 0 0 0_______________________________________________________________________

Figure 9. TC/TLB flushes per 109 application instructions

• Each program in Figure 10 was run with several TLB sizes and organizations. The standard configuration is
shown in bold. Each TLB entry consists of a 4 byte virtual machine address and a corresponding 4 byte host
machine address. So the amount of memory consumed is 8 times the number of entries shown in the TLB Entries
column.

• The TLB associativity was also varied, with the TC size held constant.

• The average search length (Len column) shows how many entries on a line are examined to discover a hit or a
miss. For a direct-mapped TLB, the search length is trivially one. For associative organizations, the average
search length is dominated by the optimization that moves recent hits to the front of each TLB line. When a
translation is moved to the front of the TLB line, it is usually used several times before it is displaced. Since the
miss rate is low, the average search length for hits is almost identical to the overall search length.

For a fixed-size TLB, increasing the associativity reduces the conflict rate. For example, a fully-associative TLB
with this protocol would only replace entries when the TLB line was full, and the least recently used entries
would be replaced. However, increasing the associativity increases the number of translations that map to a given
line. That increases the probability that two “active” translations will map to the same line and thus contend for
the first slot in the TLB.

Note that the main loop can efficiently check the first TLB slot, but if this fails, a relatively expensive call to
shade_trans must be made to complete the TLB lookup.

• The miss rate (Miss % column) is the percentage of TLB lookups that failed. On each miss, a new translation is
compiled. There are always at least as many misses as there are basic blocks (translations) in the program. The
number of misses increases when cached translations are deleted from the TLB to make space for new transla-
tions.

• For each TLB miss, a new translation is compiled and entered in the TLB. The replacement rate (Lost % column)
is the percentage of new translations that cause other translations to be discarded. The replacement rate is affect-
ed by the TLB associativity, and the TC flush rate (since the TLB is flushed along with the TC). For these experi-
ments, the TC was never flushed. If the replacement rate were 0% then all misses could be attributed to executing
code that hadn’t been executed before. If the replacement rate were 100% then all misses could be attributed to
TLB conflicts. A high replacement rate means that translations are being recompiled frequently.

Typically, more than 90% of the replaced translations are needed again later, causing recompilation. Greater as-
sociativity or a secondary “TLB victim cache” [Jouppi90] could reduce replacement and thus recompilation.

• The translation chaining optimization reduces the number of TLB references. The miss rate increases because
translation lookups always miss when the translation is first referenced (cold misses) and because the number of
TLB references goes down. However, the absolute number of misses and replacements stays nearly the same.
Chaining reduces the demand for TLB entries, which tends to reduce the number of lost TLB entries. The aver-
age search length improves, however, because only unchainable, hence fewer, translations are competing for the
head of the list.

Figure 11 shows the average number of instructions that are executed by the code generator in order to gen-
erate one machine instruction. The number of instructions per instruction in the code generator is a function of the
instruction set architecture of the host and target machines and the level of optimization. The statistics were collect-
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____________________________________________________________
4-Way Assoc 2-Way Assoc Direct Map__________________________________________________________________________________________

Ch TLB TLB Miss Lost Miss Lost Miss Lost
app

? Entries Refs
Len

% %
Len

% % % %____________________________________________________________________________________________________________________________________________________________________________________
N 16K 244M 1.097 0.091 3.130 1.037 0.105 4.061 0.445 4.503
N 32K 244M 1.063 0.102 0.650 1.033 0.097 2.926 0.451 4.408gcc
N 64K 244M 1.048 0.104 0.048 1.028 0.103 0.981 0.469 4.338__________________________________________________________________________________________
Y 16K 31M 1.032 0.716 0.842 1.008 0.654 1.479 0.562 3.000
Y 32K 31M 1.015 0.806 0.116 1.005 0.761 0.475 0.685 1.651gcc
Y 64K 31M 1.007 0.819 0.012 1.002 0.808 0.099 0.758 0.868__________________________________________________________________________________________
N 16K 103M 1.023 0.003 0.001 1.014 0.004 1.297 0.039 2.786
N 32K 103M 1.015 0.003 0.000 1.012 0.003 0.009 0.038 2.744doduc
N 64K 103M 1.012 0.003 0.000 1.012 0.003 0.003 0.038 2.744__________________________________________________________________________________________
Y 16K 7.8M 1.000 0.037 0.001 1.000 0.037 0.058 0.035 0.520
Y 32K 7.8M 1.000 0.037 0.000 1.000 0.037 0.009 0.036 0.378doduc
Y 64K 7.8M 1.000 0.037 0.000 1.000 0.037 0.003 0.037 0.370__________________________________________________________________________________________

Figure 10. TLB behavior

ed by running Shade on Shade, profiling just the code generator to determine the number of instructions executed in
the code generator, and by having the profiled Shade report the number of instructions that it generated.

_____________________________________________________________
app icount0 icount1 icount2 icount3 icount4 icount5__________________________________________________________________________________________________________________________

gcc 179.7 171.25 127.2 94.0 87.5 51.4_____________________________________________________________
doduc 245.4 271.2 162.6 111.9 102.1 58.9_____________________________________________________________

Figure 11. Code generator instructions per instruction generated

5. Cross Shades

In the previous section we focused on the Shade (subsequently referred to as Shade-V8.V8) for which the host and
target architectures were both Version 8 SPARC, and for which the host and target operating systems were both
SunOS 4.x [SunOS4]. Four other Shades have been developed. The first (Shade-MIPS.V8) runs UMIPS-V
[UMIPSV], MIPS I [Kane87] binaries, and the second (Shade-V9.V8) runs SunOS 4.x, Version 9 SPARC [SPARC9]
binaries. The host system for both is SunOS 4.x, Version 8 SPARC. There are also versions of Shade-V8.V8 and
Shade-V9.V8 where both the host and target operating systems are Solaris 2.x [SunOS5].

All of these Shades are at least complete to the extent that they can run SPEC89 binaries compiled for the
respective target systems.

5.1. Shade-MIPS.V8

Shade-MIPS.V8 was developed to provide the custom tracing capabilities of Shade for MIPS binaries. Given
Shade-V8.V8 and ready access to SPARC systems, SPARC was the natural choice for host architecture.

Little attention was paid to simulation efficiency, beyond the efficient simulation techniques already used in
Shade. Also, Shade-MIPS.V8 only simulates instructions and system calls used in SPEC89 binaries. On average,
Shade-MIPS.V8 executes about 10 SPARC instructions to simulate a MIPS instruction. We wouldn’t expect more
than a factor of two increase in simulation efficiency to be easily achieved with Shade.

As a rule, MIPS instructions are straightforward to simulate with just a few SPARC instructions. This is pos-
sible because both the MIPS and SPARC architectures are RISC architectures, both support IEEE arithmetic, and
the MIPS architecture lacks integer condition codes. The rest of this section describes some of the remaining
difficulties, solutions, and compromises.

Though MIPS systems support both big-endian and little-endian byte ordering [James90], SPARC only sup-
ports the former. The simulator currently runs only code that has been compiled for MIPS systems running in big-
endian mode. To support little-endian byte ordering, Shade-MIPS.V8 would have to reformat the data for multi-
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byte loads and stores, which would significantly increase the cost of these instructions.

A similar swapping problem exists for floating point registers. The most significant half of double precision
register number N is numbered N+1 on MIPS and N on SPARC. Shade-MIPS.V8 must translate floating point re-
gister numbers accordingly.

The immediate field size for common operations is 16 bits for MIPS, but only 13 bits for SPARC. Where tar-
get immediates do not fit in 13 bits, one or (most likely) two SPARC instructions are used to place the immediate
value in a host scratch register.

The MIPS integer divide instructions perform a divide which provides a remainder. SPARC integer divide in-
structions aren’t implemented in hardware on older systems, and don’t provide a remainder. Shade-MIPS.V8 simu-
lates integer divide by calling the standard divide and remainder library functions.

In place of integer condition codes, the MIPS architecture employs values stored in general purpose integer
registers. This frees Shade-MIPS.V8 from multiplexing condition codes as is done when simulating SPARC in-
structions. Some MIPS instructions assign values to registers based on comparison results or branch based on a re-
gister value. Shade simulates them in the obvious way, using SPARC compare, conditional branch, and set instruc-
tions.

For signed integer add and subtract instructions, Shade-MIPS.V8 does not check for overflows that would
cause exceptions on MIPS systems.

The MIPS unaligned memory operations (load/store word left/right) have no equivalents in SPARC instruc-
tions and are simulated by calls to special-purpose functions.

The MIPS floating point control register is very similar to the SPARC floating point status register, a fortunate
result of IEEE arithmetic support. The bits are arranged differently though, and translations must be performed.

The MIPS floating point instructions which convert floating point to integer values respect the current round-
ing mode, but the corresponding SPARC instructions always round towards zero. So these MIPS instructions are
simulated by calling a math library function.

The object file formats differ between SVR4 and SunOS 4.x, so a different, more complicated, program file
reader is required.

Shade-MIPS.V8 intercepts all the application’s system calls. Many of the SVR4 system calls have direct
equivalents under SunOS. Some have evolved, leaving behind compatibility functions (e.g. signal and time)
which are suitable for simulation purposes. Some system calls require data translation of varying complexity, for
instance stat (easy) or ioctl (hard and virtually unimplemented). Fortunately, less portable system calls are less
likely to appear in benchmarks.

5.2. Shade-V9.V8

Shade-V9.V8 simulates a V9 SPARC target and runs on a V8 SPARC host. The principal problems of simulating
V9 applications on V8 hosts are wider integer registers and additional condition codes. Simulating a 64-bit address
space would be a problem, but so far it has been avoided. The new V9 instructions themselves do not present much
in the way of additional problems, although there are a lot of additional instructions. Shade-V9.V8, like Shade-
V8.V8, currently simulates only user-mode instructions.

As a rough measure of relative simulation complexity, consider that, given Shade-V8.V8, it took about 3
weeks to develop Shade-MIPS.V8 and about 3 months to develop Shade-V9.V8 to the point where each could run
SPEC89.

Generally Shade generates a short sequence of V8 instructions for each V9 instruction. Notable exceptions to
this are the 64-bit multiply and divide operations, which Shade compiles as calls to simulation functions. Figure 12
shows the translation body fragment for a V9 add instruction.

V9’s 64-bit registers are simulated with V8 register pairs. This doubles the virtual state structure memory
traffic. Additional traffic results from being able to simultaneously represent only half as many target machine ap-
plication registers with the same number of host scratch registers.11

11. Shade-V9.V8 may thus be starved for registers. On register-intensive translations, using save and restore within translations could al-
leviate some register pressure problems.
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ldd [%vs + vs_r1], l0
ldd [%vs + vs_r2], l2
addcc l1, l3, l5 ! add lsw
addx l0, l2, l4 ! add msw
std l4, [%vs + vs_r3]
inc 4, %vpc

Figure 12. Shade-V9.V8 translation body

V9 SPARC has two sets of condition codes. Each instruction that sets integer condition codes sets one set
based on the low order 32 bits of the result (just as in V8), and another based on the full 64 bits of the result. The
host integer condition codes are often required (as in the add example above) to simulate 64-bit operations which
themselves do not involve condition codes. All this keeps the shade_[gs]etcc functions very busy.

For these reasons, wide registers and more condition codes, Shade-V9.V8 is less efficient than Shade-V8.V8,
and less efficient for integer than floating point applications. On average, Shade-V9.V8 simulates V8 (sic) integer
SPEC89 benchmarks 12.2 times slower than they run native, and V8 floating point SPEC89 benchmarks 3.3 times
slower. Shade-V8.V8 simulates these same benchmarks 6.2 and 2.3 times slower than they run native, respectively.

V9 supports more floating point registers and floating point condition codes than V8. As compilers take ad-
vantage of these, Shade-V9.V8’s floating point simulation performance will decline.

In V9, memory addresses for floating point doubleword and quadword loads and stores need only be word
aligned, whereas in V8 they must be doubleword and quadword aligned. So these operations are simulated by
breaking them down into word operations.

In V9, the floating point condition codes may be used by a conditional branch instruction immediately follow-
ing the floating point compare instruction which set them. In V8, the floating point compare and branch instructions
must be separated by at least one other instruction. Shade-V9.V8 sometimes generates a nop instruction following
the floating point compare instruction; usually Shade generates other simulation or tracing code that makes this un-
necessary.

Programs may manipulate 64-bit pointers under Shade-V9.V8, but when it comes time to actually access
memory (load, store, register indirect jump, system call), Shade-V9.V8 ignores the upper 32-bits of the memory ad-
dress. It can do this since by construction the application only has access to the the lower 4GB of virtual memory.
To catch application addressing bugs, Shade-V9.V8 could test the upper 32 address bits to make sure they are zero,
but doesn’t. Shade-V9.V8 will run slower if and when it needs to simulate a full 64-bit address space.

The host kernel has a 32-bit interface. Only the low order 32 bits of parameters are passed to system calls,
and the upper 32 bits of return values are cleared.12 Note that the SunOS 4.x kernels indicate success/failure via the
integer condition codes which user code interfaces interpret to return a 64-bit −1 on failures. Structures (e.g.
sigcontext) passed to/from the kernel through memory are more problematic.

Shade provides two options to support simulation of both 32-bit and 64-bit binaries. The first option selects
the size (32 or 64 bits) of integers and pointers as they appear in the initial stack. This affects the application run-
time startoff code, which may let the effects spread to main and environ. The second option specifies the width
(32 or 64 bits) of the stack register save area for save and restore instructions. This affects the stack frame lay-
out.

12. In rare cases (e.g. the pathconf system call), sign extending the return value from 32 to 64 bits may be preferable to zero extending it.
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6. Shade-X.Y

The previous sections describe the specific implementation of Shade for a few target systems and one host system.
This section considers what is needed to build a general “Shade-X.Y,” namely a Shade-like simulation and tracing
tool that simulates target system X on host system Y. Unless explicitly stated otherwise, the implementation tech-
niques presented in this section have not been used in the current Shade implementations.

6.1. The Architecture of Shade

Shade is a virtual machine implemented using a lazy incremental compiler. The retargeting issues are the same as
for a regular compiler, with the additional requirement that code needs to be produced quickly in order for the sys-
tem to be effective.

Shade parses the target system’s machine language. Target machine basic blocks are the usual “units” of
compilation, although Shade will sometimes compile longer or shorter fragments. Shade makes a pass to copy ap-
plication code and count traced instructions. It then analyzes each instruction in the context of the basic block infor-
mation, determining what analysis data should be collected about each instruction, and makes calls into the code
generator. The code generator produces native machine code for the host system.

In Shade, both the front end and back end are ad hoc. Although Shade has been ported to several target
machines, it is not a retargetable compiler because the interface between the front end and the back end depends on
both the target and host languages.

Consider a target machine that supports 32-bit immediate constants, such as the VAX [DEC81] or 68000
[Motorola84], and consider a host machine that supports 16-bit immediates. When the front end encounters an im-
mediate, the back end must check the immediate to decide whether it can generate a 16-bit immediate, or whether it
must synthesize a 32-bit immediate with several instructions. If the target machine is changed to one that has im-
mediates of 16 bits or less, such as MIPS, the back end will never need to synthesize 32-bit immediates. If the tar-
get machine is changed to one with immediates smaller than 16 bits, then the back end may sometimes be able to
collapse a sethi and some instruction with an immediate into just one instruction.

In practice, separating the front end and back end causes inefficiency because we are not able to statically spe-
cialize the dynamic compiler. In the above example, for instance, a general-purpose back end will always test im-
mediates to see if they are too large for the host machine’s immediates. For target machines with immediates that
are smaller than the host’s, the test will always fail, and is thus redundant. Likewise, a general-purpose back end
will test to see if pairs of instructions can be collapsed. For targets with larger immediates, the test for collapsing
pairs of instructions always fails.

In principle, the front end and back end can communicate in a way that is independent of the host or target
machines (but probably not both; the UNiversal COmputer Language or UNCOL problem [Conway58] is generally
regarded as unsolvable). For example, the front end can be statically parameterized by the immediate size of the
host, and can be compiled to call different back end routines depending on the size of the target machine immedi-
ates. We have not yet tried to refine the interface to improve portability.

6.2. Optimizations

Shade replaces a traditional simulator’s inner loop with translations that are customized to the simulation. The
resulting code is larger, but is specialized to the application, so Shade executes fewer instructions than a traditional
simulator.

The cost of Shade’s dynamic compiler is a part of the cost of running Shade. For a static compiler, the time to
perform the optimization is irrelevant to the performance of the final code. With a dynamic compiler, payback is
achieved only when cost of the optimization is less than the speedup of the resulting code.

Some dynamic compiler optimizations reduce the number of instructions which are executed to run the pro-
gram, but make translations so much larger that the optimizations are “pessimizations” because of the increased
code size. There are various reasons for the slowdown: more optimization takes more time; generating larger code
takes more time; larger translations fill the TC faster, reducing the effectiveness of both the TC and TLB and in-
creasing the rate of recompilation; using a larger TLB or TC increases virtual memory demands; and large code hits
less frequently in the host machine’s instruction cache.
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Which optimizations are most valuable? With tracing off, reads and writes of the virtual state are a large part
of the overhead. With tracing on, tracing dominates execution time.

Shade generally takes an instruction-by-instruction view of the target code. Better optimization could speed
up the untraced code, but overly aggressive optimizations interfere with the simulation by, e.g., discarding informa-
tion that is not needed for running the program but which is needed for collecting tracing information.

6.3. Condition Codes

This section describes machine features that make condition code simulation thorny and describes implementation
strategies for reducing the costs.

6.3.1. Machine Variations

If both the host machine and the target machine have condition codes, the host machine’s condition codes need to be
saved and restored frequently. In simple cases, condition codes are needed by Shade only at translation boundaries
to check for buffer overflow, so there is at most one save per translation, and, thus, at most one restore per transla-
tion. In harder cases, such as Shade-V9.V8, condition codes are used in emulating target instructions, so condition
codes may need to be saved and restored several times per translation.

Target machines with no condition codes have a compare-and-branch instruction and are easy to simulate on a
host machine that has condition codes. The simulation may be less efficient as it sometimes replaces a single
compare-and-branch with two instructions, a compare and then a branch. On some machines, e.g., MIPS,
compare-and-branch instructions only perform negative/positive and zero/nonzero tests. Therefore, the target’s
compare-and-branch is frequently preceded by a subtraction and the host’s simulation of that subtraction will also
set the host condition codes appropriately.

Host machines without condition codes must simulate the condition codes each time they are needed. Since
the condition codes are set by, e.g., a subtraction, and since checks for overflow and carry are less common, it is
often sufficient to use compare-and-branch on the saved result of the arithmetic operation.

The host machine may implement condition codes but set them by different rules than the target machine.
Rather than simulate them fully, it may be best to save the values and operation that set the condition codes. Later,
when it is known what condition codes are needed, just those condition codes can be simulated.

It may be hard to save and restore condition codes efficiently. In Version 8 SPARC, for example, the condi-
tion code register cannot be read nor written directly, so multi-instruction sequences are used instead. VAX condi-
tion codes are saved and restored with special instructions, but the special instructions are slower than other opera-
tions.

Most SPARC instructions which set the integer condition codes also come in a form which do not set condi-
tion codes. Thus, target code generally sets condition codes only when they are needed. On some machines, nearly
every instruction sets the condition codes. The translation compiler must analyze the block to determine which
places set condition codes gratuitously, and which produce values that must be saved.

On some machines, the condition codes are set uniformly by all instructions. On others, e.g., the VAX, an in-
teger add (which sets all condition codes) followed by bit clear (which leaves the carry bit unchanged) leaves the
condition codes set as a function of two instructions.

6.3.2. Inter-Block Analysis of Condition Codes

If Shade can determine that the following block always sets the condition codes before use, the current block does
not save condition codes that it sets. Analyzing branch targets this way is a special case of inter-block register
analysis. The payoff is particularly high because saving and restoring condition codes is particularly expensive.
Shade-V8.V8 uses this optimization.

Inter-block analysis also potentially allows the current translation to simulate only the condition codes it uses,
rather than simulating all condition codes for all uses.
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6.3.3. Partial Restoration of Condition Codes

When the host restores condition codes for, e.g., a conditional branch, only certain condition code bits are needed.
For example bneg, branch on negative, only needs to test if the negative (N) condition code is set. Rather than set-
ting all host machine condition codes, just the needed codes can be checked. Figure 13 shows the host’s zero (Z)
condition code being set if and only if the target’s negative condition code was set.

ld [%vs + vs_icc], %tmp ! load target cc’s to a register
andcc %tmp, 0x40, %g0 ! extract the N bit
bnz ... ! branch if N was set

Figure 13. Inlined partial condition code restoration

Restoring any single condition code takes one masking instruction, andcc. Combinations of set and cleared
bits, such as carry (C) set and overflow (V) clear, require two instructions: and to extract and xorcc to test. Some
condition code expressions are harder; the expression for bg, branch on greater, is: ¬(Z+(N + V)).

In-line expanding code for partial restoration, as above, eliminates call/return overhead. It also enlarges each
translation that has condition code restoration.

6.3.4. Deferred Simulation of Condition Codes

If it is particularly hard to save the condition codes, it may be profitable to save data to recreate them on demand. In
general, this requires saving a few source values and an operation indicator.

Consider the application fragments in Figure 14a, where first sets the condition codes for use by second.

first:
subcc %i0, %i1, %i2
ba,a second
...

second:
bneg third
nop

Figure 14a. Application sets the condition codes

Shade-V8.V8 generates a first translation that makes a call to shade_geticc to save the condition
codes in the virtual machine state. In the translation for second there is a call to shade_seticc to restore the
condition codes for bneg.

An alternative first translation body (see Figure 14b) saves values and an index that indicates which opera-
tion first uses to set the condition codes. The translation for second computes the condition codes by calling
shade_opcc (see Figure 14c), which loads the two values and repeats the operation that first uses to set the
condition codes.

st %i0, [%vs + vs_val0] ! save source values
st %i1, [%vs + vs_val1] ! ...
add %g0, 0x08, %scratch ! build index into opcode tbl
st %scratch, [%vs + vs_op] ! .. and save it
subcc %i0, %i1, %i2 ! set %i2

Figure 14b. Saving values and operation for later use
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shade_opcc:
ld [%vs + vs_val1], %o1 ! load one source value
ld [%vs + vs_op], %o2 ! load the operation number
set 1f, %o0
jmpl %o0 + %o2, %g0 ! .. and jump to that entry
ld [%vs + vs_val0], %o0 ! load other source value

1:
retl; addcc %o0, %o1, %g0 ! add: opcode index = 0x00
retl; subcc %o0, %o1, %g0 ! sub: opcode index = 0x08
retl; andcc %o0, %o1, %g0 ! and: opcode index = 0x10
...

Figure 14c. Restoring the condition codes

The shade_opcc routine uses the index to dispatch to an instruction that sets the condition codes. first
saves an index but could save the address of the restore fragment instead.

For Shade-V8.V8, deferred simulation would be marginally better in dynamic instruction counts. However,
translations that save and restore condition codes are larger, have more memory traffic, use more registers, and don’t
save that many instructions: 5 vs. 11 to save, 8 vs. 7 to restore. Partial restoration can further reduce the
shade_geticc’s 7 instructions to restore condition codes, but cannot be used with deferred simulation. Finally,
inter-block use/set analysis minimizes the number of translations that need to save and restore the virtual condition
codes, so small differences in save/restore performance are relatively unimportant.

The shade_geticc and shade_seticc functions can save and restore condition codes using a single
byte store and a single byte load. In Shade-V8.V8, deferred simulation would require two word stores and two
word loads. For Shade-V9.V8, values are 64 bits, further increasing the memory traffic and register pressure.
Furthermore, 64-bit load and store instructions may take longer to complete. Finally, the operations in
shade_opcc that set the 64-bit condition codes are multi-instruction sequences. Note, however, that one deferred
simulation can replace two calls to shade_geticc if both 32-bit and 64-bit condition codes need to be saved.

On other machines the costs will be different. The above is given as an example to show the kind of analysis
that is needed.

6.3.5. Hoisting Branch Targets

If condition codes are set in one translation and used immediately in the successor, then the branch target can be
hoisted into the translation that sets the condition codes. Potential costs of this approach include growth in the trans-
lation size and translations with many epilogues.

6.4. Register Assignment

Shade generally assigns host registers to target registers for one translation, which is called local allocation. In the
best case, each target register is read at most once per translation from the virtual state structure, and is written at
most once per translation. Some registers, such as the target program counter, are used so frequently that it almost
always helps to allocate host registers just for them. These registers are allocated the same in all translations; this is
called global allocation.

Most target registers are used frequently in certain regions of a program, but usage patterns change over the
program, so global allocation of these registers hurts more than it helps. The translation compiler might instead per-
form regional allocation. When control passes between translations using the same policy, no save/restore traffic is
needed for regionally-allocated registers. At policy boundaries, all non-global registers are saved to the virtual
state, the same as with local allocation.

With a register-starved target and a register-rich host, it may be possible to do global allocation and put all
target registers in host registers, eliminating most reads and writes of the virtual state. With a register-starved host
there are many saves and restores within a translation, so neither regional nor global allocation is generally useful.
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Some registers, especially the condition codes, are multiplexed between the host and the target and cannot be
allocated across multiple translations. However, modified registers that are reset before use by all successor transla-
tions need not be saved. The translation compiler can discover such registers with inter-block analysis. Such dead
store elimination is particularly valuable for, e.g., condition codes on SPARC, where saves are expensive and the
condition codes are rarely used outside of the translation in which they are set.

6.5. Byte Order

If the byte order of the host and target machines is different, multibyte memory accesses must simulate byte reorder-
ing in order to get values loaded into host machine registers properly. Data cannot be stored in reversed order in the
program for two reasons: First, the program may use a multibyte quantity as both a single multibyte object and as an
array of bytes. Second, some values are created statically by the compiler and thus are in the “wrong” byte order. It
is hard to determine whether a given load/store is for a statically-generated or dynamically-generated number.

Byte order is sometimes called endian-ness [James90], and byte reordering “byte swabbing” [Mitze77]. A sim-
ple load instruction in the application code may require 8-10 instructions on the host [James90].

It may be possible to optimize stack-relative loads and stores to use host machine byte-order rather than virtu-
al machine byte-order. Such an optimization will definitely break on arbitrary code, but may work on, e.g., portable
C code.

6.6. Alignment

Some architectures (e.g. VAX and RS/6000 [IBM90]) allow multibyte quantities to be read from any address. Oth-
ers (e.g. MIPS and SPARC) require multibyte loads and stores to be aligned on boundaries which match the size of
the data item. Thus, simple loads and stores in the application must sometimes be translated into complicated inter-
polation sequences.

Some architectures have instructions to assist with unaligned loads.

Simulating unaligned loads is generally expensive enough that it is worth performing tests to avoid simula-
tion. One strategy is to compile two translation bodies: one assumes aligned pointers, the other works with any
alignment. The translation checks the pointers on entry and branches to the appropriate body. If the aligned or
unaligned case is sufficiently rare, it can be compiled on demand.

Another alternative is to assume that a particular application load or store instruction will use memory ad-
dresses with the same alignment from one execution to the next. The compiler examines the alignments of the
pointers and compiles the translations to use loads and stores matching those alignments. Each translation has code
that checks if the assumed alignments still hold and, if not, compiles a new translation for the new alignment. A
new translation can be optimized to the new pointer values [Johnston79], the new translation can be more general and
less optimized [SW79], or several versions can be kept and the version that is used depends on the alignments on any
given call [May87, HCU91].

Some operating systems allow unaligned loads and stores, at the cost of a trap. If unaligned accesses are rare,
the occasional trap may be preferable to constant testing or interpolation.

Note: Alignment and byte order handling code can sometimes be combined.

6.7. Memory Layout

So far, the description of Shade has assumed that address translation is used to map target addresses to host ad-
dresses. Another approach, used in Shadow and older Shade implementations, is for the host and target to have
identical memory layouts, such that a value at, say, location 0x53 on the target is also at location 0x53 on the host.
However, the memory layout may be different across machines in ways that make it impossible to allocate code or
data on the host machine in the locations expected by the target machine.

The machines that we are considering generally have three segments: code, data (including BSS and heap),
and stack. The address space may also have holes that are inaccessible for various reasons. Page size may also af-
fect memory layout.

Ideally, the target machine code and data are allocated at the same location in the host machine as they are lo-
cated on the target machine. It is generally unimportant where the stack is located. The host machine need not have
the same default layout as the target machine in order for the two to be mapped identically. For example, under
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SunOS, the data segment begins immediately following (or in the first page immediately following) the code seg-
ment. However, using the mmap system call, the target machine data for a MIPS application can be mapped to start
instead at its normal location, 0x10000000, far from the text.

Sometimes it is impossible to locate the target machine memory at the desired location. For example, under
VMS the first 512 bytes of the address space cannot be read, written, or executed by a user process. Thus, memory
for a target machine that references low locations cannot be loaded at the proper location. It is then necessary to
transliterate addresses. For example, code could be shifted to addresses that are all 512 bytes higher and all code
segment references can be offset by 512.

Constant data values are often stored in the code segment. If only one segment is offset, then generic loads
and stores must check to see what offset is needed. If both code and data are offset, then all references may be
offset blindly. With blind offsets, the approach used in Shade, execution is slowed down only slightly because the
mapping from target machine addresses to host machine addresses is mostly done by the compiler, and the compiler
runs infrequently.

The above discussion of memory layout ignores the simulator. The simulator must also live somewhere in the
address space. It is assumed that the host machine will be able to set aside a sufficient part of the address space.

Some applications change page protection to implement garbage collection, distributed shared memory, and
so on [LH89]. Memory protection is an OS emulation issue, but deserves special attention here because problems
such as differing target and host page sizes can be dealt with as with page accessibility problems. Such problems
can usually be handled lazily, running at full speed until the application makes a call to, e.g., change page protec-
tion.

In the worst case, memory can be simulated entirely, but at a cost of more than 10 instructions per load and
store [Bedichek90a]. A simulation of multiple address spaces requires translation on every application memory refer-
ence [Bedichek90a].

A simulator that models multiple address spaces will need to perform address translation on every reference,
since a given address will reference different physical storage depending on the address space in which it is issued
[Bedichek90a]. Note, however, that Shade performs instruction address translation when translations are compiled,
rather then when they are executed.

6.8. Page Size

For many programs, page size is not an issue; either they are unconcerned with page size, or use whatever page size
is supplied by the kernel at run time.

One problem area is that binaries are often set up to start the data on the first page following the last page of
code. If the host’s page size is larger than the target’s, the last target code page and first target data page may reside
in the same host page. Solutions include offsetting the code and data and changing host protections to allow writes
to the last code page.

Another problem area is that some programs will reasonably expect to be able to change page protections on
the granularity of the target machine. Whenever the host and target have different mappings for the target pages,
the simulation for memory references must include protection checks.

6.9. Floating-Point

There are two issues with floating-point values: One issue is whether the host and target use the same floating-point
format. The other issue is whether a given operation will produce the same result on the host and target.

When the host and target use different floating-point formats, it is generally faster to convert target values to
host values and perform operations using native host instructions. As with byte ordering, floating-point values are
generated statically, so conversions must be performed on every load and store. In most cases, the host can operate
directly on the converted values; few applications rely on the internal format of floating-point values. Some li-
braries rely on the internal representation, so occasionally the target’s floating-point format must be emulated, but
sometimes only for integer (including bitwise) operations on the floating-point values. When the host and target use
different layouts it is often difficult (costly) to simulate the target operations exactly.

When the host and target use the same format, no conversion is needed. Machines that are IEEE-compliant
are required to have bitwise identical representations for all numbers and are required to perform rounding the same
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way. Furthermore, compliant implementations are required to handle special (infinite or indeterminate) values in a
standard way.

IEEE-compliant systems include: IBM RS/6000, MIPS, Motorola 68000 and 88000 [Motorola89], and SPARC.
Non-IEEE systems include: IBM 360 family and VAX.

Note that an IEEE-compliant application is guaranteed to be portable. It is not required that all applications
running on a given platform are IEEE-compliant.

There may be rounding differences in the conversion between virtual machine and host machine formats. The
rounding differences may occur even if the host machine uses a higher-precision representation than the virtual
machine.

Note that machines may use more bits of internal precision, so machines with compatible layouts may still
produce different answers. Thus, equivalent operations on machines with compatible formats may produce different
results.

6.10. Jumps and Linkage

Most machines have a near/fast branch and a far/slow branch. On most machines conditional branches are available
only in the near/fast form. Application code generally exhibits good locality, but translations for that code may be
scattered around the TC. On SPARC, the fast branch form covers a range of 8MB. Thus branches within the TC
can use the fast form if the TC is less than 8MB. Branches to and from the TC (e.g. to and from the simulator) may
be much more than 8MB away, so the long/slow form must be used.13

It is sometimes reasonable to preload static code fragments in the TC to ensure they are within branch dis-
tance. For example, rarely-taken full-buffer returns can use a conditional branch to nearby trampoline code that
performs a long/slow jump to the main loop’s full buffer return. For example, Figure 15a shows a short prologue.
On the rare occasions that the buffer is full, it jumps to a nearby copy of the fragment in Figure 15b, which in turn
returns to the main loop. Note that in many existing SPARC implementations, taken branches are less expensive
than untaken branches. Thus, in the non-full common case, this shorter sequence takes longer to run than the longer
sequence used currently in Shade.

prologue:
subcc %ntb, count, %ntb
blu,a eot_trampoline
addcc %ntb, count, %ntb

body:

Figure 15a. A shorter prologue

eot_trampoline:
call eot
nop

Figure 15b. Trampoline code (replicated)

Common cases should avoid trampoline code, but near branches can still be used if, e.g., the translation epilo-
gue uses a near branch to a replicated copy of the main loop.

13. SPARC has an unconditional non-annulling fast far branch, call, that is actually used in most cases.
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6.11. Application Traps and Signals

A signal causes a change in the control flow without an explicit control transfer instruction. Asynchronous signals
arise from external events such as timer expiration and keystrokes. Synchronous signals, also known as traps , arise
because of, e.g., arithmetic overflow or invalid memory references. Traps always interrupt the instruction that
caused them, and can be predicted by examining the machine state before starting the instruction.

This section considers signals that are meaningful to the application, as compared to Shade or the analyzer.
We distinguish between arrival , when the signal is delivered to Shade, and delivery , when the application starts ex-
ecuting instructions to handle the signal.

Application signals can arrive when Shade is running analyzers, the dynamic compiler, etc. In these cir-
cumstances it may be impossible to execute the signal handler immediately because, e.g., the trace buffer or TC is
full.

Signals also must be delivered when the virtual machine is in a consistent state. The virtual state can be in-
consistent during translation execution because Shade keeps some virtual machine state in host registers and emu-
lates target instructions using multiple host instructions. The virtual state is generally consistent at translation boun-
daries. It is possible to generate code so that state is consistent on finer boundaries, but doing so interferes with op-
timizations.

Thus, signal delivery to optimized code can use three techniques: compiling code at lower optimization, de-
laying signal delivery until the state is consistent, and mapping host state back to virtual state on demand. The com-
plexities discussed below are only needed for applications that receive signals. Other programs, including those that
ignore or “default” signals, run at full speed.

6.11.1. Asynchronous Signals

Asynchronous signals can be delayed and delivered at a convenient point, when resources (e.g. empty trace buffers)
are available and the virtual state is consistent. Each signal arrival causes invocation of a host signal handler that
queues the signal and resumes execution of the simulator. At some convenient point, such as execution of the simu-
lator main loop, the global signal queue is checked. If there are signals pending they are handled instead of running
the regular application code.

Translation chaining may create a cycle that executes indefinitely, making it impossible to check for signals
reliably in the main loop. The chaining cycle can delay signal delivery until program termination, or even forever if
the loop is waiting for arrival of a signal. Potential solutions include:

• Ensure chaining cannot form cycles, so that control will eventually return to the main loop. Since chaining is a
useful optimization, don’t turn it off completely. Instead, backward chaining (chaining to lower addresses in the
TC) is turned off [DS84]. Since no cycles can form, control always returns eventually to the main loop. Turning
off forward chaining can leave cycles for self-chained translations.

• Allow chaining to form cycles and put a signal check in each translation. That makes each translation larger. As
an optimization, forward-chained translations can skip the flag check.

• Translations can be unchained on signal arrival, so cycles are broken by signal delivery.

6.11.2. Signal Delivery by Unchaining

Unchaining requires a mechanism to find the chaining slots in each translation. For example, each translation can
be marked in a table that describes the start and chain slot(s).

The simplest solution is to unchain all translations on signal arrival. Selective unchaining reduces the
delivery cost by unchaining only the translation that is executing when the signal arrives. The host signal handler
examines Shade’s call chain, starting with the program counter at the time of signal delivery. If the current host
program counter arises from a translation, that one translation is unchained. Otherwise the translations will eventu-
ally be reinvoked via the main loop, which will test for signal delivery, so no unchaining is needed.

With selective unchaining and signal detection in the main loop, a race condition occurs when a signal arrives
after the main loop signal test and before the next translation is invoked. The main loop test indicates there is no
signal, but the host program counter does not arise from the TC, so no translations are unchained. Thus, the host
signal handler (which defers delivery) must treat certain host program counter values in the main loop specially,
branching to special code depending on the particular main loop instruction. The special code cleans up if neces-
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sary and invokes the signal handler.

The main loop fast path finds unchainable translations that hit in the TLB first entry. The fast path is execut-
ed frequently, so a signal delivery test may be substantial addition to the main loop cost. Unchaining can be used to
avoid signal testing in the main loop. When a signal is delivered to unchained translations, the return is set to a spe-
cial entry point in the main loop that tests for signals. Signals that arrive during the fast path are detected by check-
ing the host program counter to see if it is in certain parts of the main loop, as above. Slower paths through the main
loop perform the normal signal test.

6.11.3. Simulating Synchronous Delivery

Traps can be predicted by examining the machine state before executing the instruction. Thus, it is always possible
to prevent (simulate) traps. For example, traps arise because of a store to an unwritable page, arithmetic overflow,
etc.

Some machines trap on arithmetic exceptions such as overflow. Target machine traps can be simulated with
compares and branches, at a slight, extra expense.

A harder problem is that some host machines always, e.g., trap on overflow, but the target machine does not.
That is, it is difficult to avoid a trap. Solutions include:

• Install a trap handler that simply returns without handling the exception. Traps are expensive so the slowdown
may be extreme. Also, ignoring the exception may not always be what is desired, so the exception handler may
need to test, or the exception handler may need to be changed periodically.

• The operation can be performed in a way that can never trap, e.g., performing a 32-bit add as a pair of adds of the
16 bit parts, and then combining the parts.

• The translation can pretest to see if the operation could cause an exception. If the operation might cause an ex-
ception, an expensive trap-free simulation is used. When a trap is never possible, faster code is used.

6.11.4. Synchronous Delivery

Simulating traps is often expensive. For example, testing page write permissions requires a test on every store in-
struction, even though few writes will trap. Instead of simulating traps, they can be delivered as synchronous sig-
nals to the host.

Synchronous signals must halt the current target machine instruction. Thus, if synchronous signals are taken
and not simulated, it must be possible to interrupt a translation in mid-execution and clean up state so that no infor-
mation is corrupted or lost. It is thus necessary to keep a translation map that has information used for interrupting
partly-completed translations.

Synchronous signals that are delivered to the application should only arise from instructions that are directly
simulating the target machine. Synchronous signals caused by, e.g., prologue and epilogue code or saving of trace
data are the result of errors. Thus, the translation map needs only entries for instructions that both simulate the tar-
get machine and can cause exceptions.14

Thus, for each instruction that might trap, the translation map has an adjustment for the current virtual PC,
trace buffer entry, and number of unused trace buffer entries. It also describes how to write back host registers to
the target virtual state so the virtual state is consistent with the start of the current virtual instruction. If the target
condition codes are currently in a host register, they, too, must be stored to the virtual state.

One application instruction may map to multiple host instructions. Partial results must not be stored back to
the virtual system state. Generally, synchronous delivery prohibits optimizations that make it hard to map the host
state back to valid (consistent) application state.

Synchronous signals should not happen in code outside of the TC, with the exception that signals can arise
from a small set of utility functions, such as code that simulates multiply and divide. If the utility functions update
state in well-defined ways, it is sufficient to search the host call chain, restore spilled registers, and replace the
current PC with the PC of the translation instruction that called the utility function. Then, signal handling can

14. In some implementations, other instructions could trap and some of those need translation map entries. For instance, instructions that save
trace data could trap to signal trace buffer overflow.



- 28 -

proceed as if the signal happened while the PC was in the TC.

Parts of the translation map can be recreated on demand by re-running the compiler. However, care is needed
in the presence of self-modifying code.

Note that the analyzer may want a trace buffer entry for the instruction that caused the signal, even though the
virtual program counter is not advanced past that instruction.

6.11.5. Condition codes

Condition codes are allocated across target machine blocks, and therefore across translations. However, the condi-
tion code register does not always hold the virtual machine condition codes.

One problem is that the virtual condition codes are discarded when it is expected they will be set before they
are used again. That omits an expensive save back to the virtual state. However, it also leaves the virtual target’s
condition codes inconsistent with the condition codes of the real target. Making sure the target condition codes can
always be found in the virtual state requires deoptimization of the translations so that condition codes are always
saved at translation boundaries. Fortunately, asynchronous signals rarely examine the condition codes exactly be-
cause the signal arrives asynchronously, when the condition codes are in an unknown state. Therefore, the major
use of the condition codes is to save and restore them, and it is usually acceptable to save and restore inconsistent
codes: the condition codes are inconsistent exactly because the application will set them again before using them.

When synchronous signals are delivered, the condition codes could be in a host register or they could be in
the virtual state. Thus, the host signal handler must save the condition codes, but to someplace other than the virtual
state. Then, the handler examines the translation map to determine whether the just-saved condition codes need to
be moved to the virtual state.

6.12. Detecting Self-Modifying Code

Self-modifying code presents a problem because Shade caches code, and the cached copies must be updated when
the original is changed. Self-modifying code is common enough that it must be dealt with correctly
[Keppel91, KEH91].

Read-only pages can be compiled and executed blindly. There are various strategies for detecting changes to
writable pages:

• The SPARC Application Binary Interface (ABI) defines an interface for the updates. ABI-compliant SPARC ap-
plications use the flush instruction to signal changes. Most systems define equivalent instruction cache flushing
primitives. When the application signals an update, the corresponding translations are flushed.

• Pages are marked as read/write data pages or executable code pages. When code is compiled from a data page,
the page is marked as executable. A write to an executable page invalidates all corresponding translations and
marks it as a data page.

• Translations are compiled, executed, and then discarded instead of being cached. Writable pages execute slowly
because translation caching is turned off and instructions must be recompiled each time they are executed. In ad-
dition, each translation can be only as many target instructions as the target processor’s instruction prefetch, typi-
cally only a few instructions.

By default, Shade uses flush for instructions inside the target’s code segment and discards translations for
instructions outside the code segment.

6.13. TC Freeing

Shade’s freeing strategy—flushing the TC when it fills—is simple and usually works well. In some situations the
strategy performs poorly because it discards both useful and useless translations. Chaining makes other freeing stra-
tegies hard to implement because several predecessors may chain directly to a translation that we would like to free.

When little or no tracing is being done, translations are small and control transfers happen frequently, so
chaining is an important optimization. When a lot of tracing information is being saved, translations are large so
space demands on the TC are high, and since translations are large, transfers between translations are less frequent,
so chaining is less important. It is, therefore, sometimes acceptable to turn off or reduce the degree of chaining to
allow freeing on a finer granularity.
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If translation chaining is turned off, the TC can be maintained as a heap. When space is needed and the free
list is empty, more space is created by selectively freeing translations. One strategy is to free them in the same order
they were created (FIFO). With FIFO freeing, it is generally necessary to keep the target address with the transla-
tion so that TLB entries can be removed without searching the TLB. Another strategy is to approximate LRU by
deleting translations that have migrated to the end of the TLB search list.

With restricted chaining, FIFO freeing can still be implemented. The low part of the TC is “new” space
where newly-compiled translations are put. The high part of the TC is “old” space which is gradually being freed
and converted into new space. The key observation is that predecessors can be chained safely whenever they will
be freed before their successors. Thus, backwards chaining (jumps from high TC addresses to low) is allowed only
when it goes from the old space to the new space, and forwards chaining (low to high) is disallowed if it would
cross from the new space to the old space.15

A third option is to limit chaining so that a translation has at most one predecessor and a pointer to that prede-
cessor. When a predecessor chains to a successor, the successor’s old predecessor is unchained and the predecessor
field is set to point to the new predecessor (or, rather, to the predecessor’s chaining slot). Freeing a successor sim-
ply unchains the most recent predecessor, pointed to by the successors’ predecessor field. Since many translations
have more than one predecessor, this “one-bit reverse branch prediction” strategy can lead to thrashing. However,
since most translations have only a few predecessors, remembering two or three predecessors can eliminate most
thrashing.

Translations that “fall off” of the TLB can be freed speculatively or marked as no longer accessible.

6.14. Reproducible Bugs

It would be nice to have the simulator not only execute correct code correctly but also execute incorrect code
“without any surprises,” that is, without behaving differently than it would on a real machine. However, it is harder
to run buggy programs the same as real hardware than it is to get correct programs to run correctly. For example, it
may be that a certain location on the real machine always reads as a null-terminated string when used by a buggy
program, but that same location is not accessible on the host machine. The address translation tricks described
above can make the address space of the virtual target machine to appear identical to those of the real target
machine, but at a penalty in performance. Major parts of Shade and the analyzers could be unmapped during simu-
lation, but again at a performance penalty. Since correct programs never reference illegal locations, such costly
robustness is of no use to them.

6.15. Timing

The virtual target machine does not run the same speed as the real target machine. There are two problems. First,
the virtual machine runs at a different average speed. Second, the variability is great—a given code fragment may
run quickly one time and slowly another. Most applications are timing-independent because they run under mul-
tiuser operating systems where the machine effectively runs slower when heavily loaded and the average speed
changes with changing workload. Thus, the major timing problem is that simulation is slower than one would like.

Timing often depends substantially on the host and target architectures and on the host implementation. It
also depends on the application’s use of the target, which is in turn affected by details of the application, compiler
optimizations, and so on [Magnusson93].

6.16. Level Of Detail

As described above, Shade simulates only the user-mode SPARC architectural features. It is possible to simulate
more of the machine [Bedichek90a], but the execution is typically slower because the virtual-to-host mapping is de-
graded.

For example, if Shade simulates multiple address spaces, all loads and stores must use address translation.
Translation is needed because a given virtual address (virtual in the paging sense) can translate to different physical
addresses depending on the context. In general, substantial parts of address translation must be simulated. With a
simulator that performs only user-level operations, all protection checks are performed by the host machine. With

15. This style of chaining executes the main loop periodically, so a main-loop signal test will deliver signals reliably.
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both user and kernel operations, many operations must be protection-checked by the simulator.

Shade may touch memory in a different order or a different number of times than would be touched by a real
target machine. For example, Shade will read a string of several instructions before executing the first of them.
Since Shade caches translations it may also execute an instruction many times without reading it from the target
memory. Such differences may break applications that depend on references to certain pages to cause faults that
perform synchronization.

6.17. ABI Conformance

The simulator must faithfully emulate the instruction set architecture. However, it must emulate other features of
the environment, referred to as an Applications Binary Interface (ABI).

Since the simulator (as discussed) only simulates the user mode of the machine, it must emulate user calls to
operating system code. Basically, that means writing an OS emulation for each OS that runs on the virtual proces-
sor architecture.

Memory layout, memory reference patterns, timing, and signal handling issues are also ABI issues.

7. Historical Perspectives

7.1. SpixTools

SpixTools [Cmelik93a] first appeared circa summer 1988. It is a set of instruction level profiling tools for SPARC
applications inspired by similar tools from MIPS. spix (à la pixie [MIPS86] from MIPS) creates an instrumented
copy of a program. The instrumented program, running on average 1.6 times slower than the original, counts the
execution of basic blocks as the program runs, and writes out these counts as the program terminates. From these
counts, spixstats (à la MIPS’ pixstats) may be used to print dynamic instruction profile information. Other
tools include a disassembler which annotates instructions with instruction execution counts, and a program which
annotates source code with statement or instruction execution counts.

7.2. Span

Address traces could not (and still cannot) be produced with spix as they can with pixie. span was developed
in the fall of 1988 to fill this need.16

span instrumented an application, arranging for it to collect trace information as it ran, and periodically pass
this information to user analysis functions which were compiled into the application. With null analysis functions,
instrumented integer applications ran about 24 times slower and floating point applications about 18 times slower
than native.

span trace information included instruction addresses, effective memory addresses, branch taken flags, and
annulled instruction flags. Instruction text and decoded opcode values were optionally provided in tables for use by
the analyzer, but only static code was supported. Register values used in instructions were not available. Tracing
could be enabled or disabled according to instruction address, or gross opcode groupings. There was no user trace
function provision.

In addition to the conflicts of interest Shade presents, span presented additional conflicts. Compiling
analysis routines into applications was a nuisance, and, for some applications, impossible for lack of source code.
Also, the analyzer could not use functions used by the application, at least not the same copy, because these func-
tions would be statically instrumented, then traced at run time.

7.3. Shadow

Shadow [Hsu89] first appeared in summer 1989. It uses simple dynamic compilation, which makes it possible both
to separate the compilation of application and analyzer, and to run dynamically linked code. These capabilities led
to span’s rapid abandonment, despite its speed advantage. Under Shadow, with no analysis, applications run on
average 64 times slower than native.

16. span’s limited lifetime limited its robustness. After resurrection it could only handle half of SPEC89: 008.espresso, 015.doduc, 030.ma-
trix300 , 042.fpppp , and 047.tomcatv.



- 31 -

Shadow compiles without caching, emulates, and traces application instructions one at a time, and periodical-
ly passes the buffered trace information to a user supplied analyzer. Shadow provides the same trace information as
span, plus the potentially variable instruction text. Shadow variants have also been developed in which integer and
floating point registers are traced. Shadow has no user trace function provision.

Shadow analyzers are linked to run at the high end of memory so that the application can be loaded in its na-
tive location. This eliminates the need to perform application address translation.

Shadow supports a native execution mode (entered and exited upon receipt of a signal from the user) in which
the application code is run directly, and hence, at full speed.

7.4. Shade

Shade, first appearing circa fall 1990, is a new and typically improved version of Shadow. The introduction of the
translation cache more than bought back the speed advantage of span’s static translation.

Other improvements include more trace control and capabilities, more control over running applications, and
mitigated conflicts of interest.

Application address translation is a recent addition to Shade. So far it has only been added to Shade-V8.V8
and Shade-V9.V8. Although it complicates the Shade implementation, and slightly slows down simulation, it great-
ly simplifies the development and use of Shade analyzers.

Prior to this, Shade analyzers resided in the high end of memory like Shadow analyzers. Shade analyzers
were run by running a program (called shade) which loaded the analyzer at the high end of memory and then
transferred control to it. This complicated compiling and running analyzers. More importantly, software develop-
ment tools such as debuggers and profilers were almost useless, since they would operate on shade, not the
analyzer, and shade would soon be overwritten by an application program.

Earlier versions of Shade actually had better performance: SPEC 89 floating-point programs ran about two
times slower and integer programs about five times slower. Adding features such as address translation and support
for signals reduced performance to the current levels. Although techniques such as lazy unchaining could improve
performance, the added complexity isn’t worthwhile, given the ways Shade is normally used.

8. Related Work

In this section we describe related work. Since Shade is both a simulator and a tracing tool, we consider
instruction-set simulators, fast virtual machines, and other instruction-level tracing tools.

8.1. SPIM

SPIM is an R2000/R3000 simulator that includes some OS emulation and debugging facilities [HP93]. SPIM is writ-
ten entirely in C and runs on HP-PA (Snake), 80386, MIPS, 68000, and SPARC hosts. The entire target application
is decoded to IR once, when it is read in. The main simulator loop uses straightforward dispatch and interpretation.
SPIM is designed for portability and has not been optimized extensively. It runs decoded instructions about 25
times slower than hardware. The time for decoding is not given.

8.2. g88

g88 is a simulator for a Motorola 88000 processor, including privileged instructions and address translation
[Bedichek90a]. The simulator interprets 88000 instructions using threaded interpreter techniques. The 88000
machine code is dynamically translated, one target instruction at a time, into interpreter code that is then cached.
Threaded code is four times the size of the target 88000 code. g88 will run ABI-compliant self-modifying code.

g88 runs on 68000, 88000, and SPARC hosts. On the 68000 host, each target (simulated) instruction takes an
average of 20 host instructions. Figures should be similar for other hosts because the simulator does not try to ex-
ploit complex host instructions [Bedichek90b].

The simulator uses the host machine types and bit-level representations, rather than simulating those of the
88000. Operations are performed in the host’s native mode and without conversion to and from the 88000 represen-
tation, but programs that rely, e.g., on the bit-level representation of floating-point values will not run on the simula-
tor when the simulator is run on a machine that uses a different bit layout for floating-point types.
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The 88000 simulates address translation for multiple address spaces and kernel-mode instructions. All appli-
cation memory references are translated and protection-checked, so bugs in the application program being debugged
cannot cause the simulator to fail. g88 has been used to debug and run operating system kernels before the real
hardware was available. It is also used to debug code that is difficult to debug on the real hardware.

g88 has also been extended to simulate multiprocessors. One version uses a different decoded instruction
format to reduce the number of host memory references needed to simulate a target instruction [Magnusson93].
Simulation takes typically 35-40 instructions per simulated instruction on a SPARC, and 55-60 instructions per
simulated instruction on an HP-PA. Context switches between virtual processors every 10 simulated instructions al-
most halves performance, and context switches every cycle reduces performance to 20% of the original speed. With
coarse-grained context switching, sampling to record the type of each instruction slows execution to 10% of the ori-
ginal speed.

Another multiprocessor version uses the original instruction format and keeps separate decoded instruction
pools for each virtual processor [Bedichek93]. Using separate pools simplifies decoding and speeds context switch-
ing, but memory size increases with increasing number of processors. On a SPARC, context switching every 100
instructions requires typically 45 instructions per simulated instruction. Context switching every simulated instruc-
tion reduces performance only to about 70 instructions per simulated instruction.

8.3. Mimic

Mimic [May87] is a dynamic incremental compiler that emulates the user-level environment of an IBM S/370 on an
IBM PC/RT processor. Mimic is an emulation tool, not a tracing tool. Like Shade, it assumes correct programs;
buggy programs may see a machine emulation different than the real machine.

Although Mimic and Shade are similar at a high level, they differ in many details.

• Where Shade maps the target program counter to the host PC with a TLB, Mimic uses a linear table that con-
sumes 4 bytes for each 2 bytes of target memory; there are a total of 224 bytes of target memory. The linear table
simplifies dispatch but is large and somewhat sparse, potentially leading to locality problems.

• In Shade, the units of translation are approximately basic blocks. Mimic does complicated inter-block analysis so
that clusters of basic blocks can branch directly to each other instead of indirectly through the program counter
map. Frequently, inner loops or all of small procedures can be translated as a unit. Mimic can, therefore, often
use fast host branches instead of a complicated emulation of S/370 branch instructions.

• Shade compiles translations that are always correct. Mimic compiles optimistically, assuming certain values,
especially the value of the base register used in jumps. Correspondingly, Mimic prologues check the assump-
tions. If they no longer hold, Mimic recompiles the translation, generating slower but more general code.

• Shade can have many translations for a single target instruction. Mimic has only one translation for a given target
instruction. Correspondingly, Shade has one prologue and one or two epilogues for each translation. Since Mim-
ic translates clusters of basic blocks, there may be many entry and exit points, thus many prologues and epilo-
gues.

• The Mimic host and target machines have the same number and size of registers. Instead of doing register assign-
ment, there is a static mapping between host and target registers. Target registers are allocated at essentially all
times, notably across translations. Scratch registers are generated by temporarily spilling target registers.

• Mimic does not run programs that use self-modifying code. The lone exception is in supporting the Execute in-
struction, which allows code to be generated in a machine register and then executed.

• Some target machine features are not implemented: The S/370 supports unaligned multibyte accesses. Mimic
does not correctly handle unaligned references; it merely continues, erroneously, and silently. Mimic does not
support program exceptions. Mimic also does not support floating-point instructions. Supporting these features
would change the performance in unknown ways.

When a given program is recompiled (or rewritten) for the PC/RT, it executes about two times as many in-
structions as on the S/370 host. Code produced by Mimic executes roughly twice as many instructions as that, or
about four times as many instructions as the S/370 host. These numbers are rough but give an order-of-magnitude
indicator of the good code quality.

Code generation is expensive compared to Shade; about 2,000 host instructions are required to compile a tar-
get instruction, and instructions are typically compiled twice during a single run of a program because some op-
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timistic assumptions do fail, forcing recompilation. The amortized cost of analysis and code generation is not re-
ported. Based on given static program sizes, dynamic instruction counts, and assumed instruction makeup, it ap-
pears analysis and compilation is more than 90% of the total cost of running a program. Caching compiled code
across program executions is suggested to reduce the overhead.

8.4. ST-80 and SELF

ST-80 [DS84] is a high-performance virtual machine for Smalltalk-80 [GR83], and SELF is a virtual machine for a
similar bytecoded virtual machine [CUL89]. Both use lazy dynamic compilation of procedures (“methods” in
Smalltalk parlance) to transform bytecodes into native machine instructions. Compiled procedures are cached so
that when the bytecode sequences are re-executed, the already-compiled code can be used, avoiding recompilation.
Although bytecodes are designed for quick interpretation, executing native code with ST-80 makes programs run up
to twice as fast as a standard interpreter. The more generic instruction set of SELF is at least two orders of magni-
tude slower with interpretation. The SELF compiler uses sophisticated analysis and aggressive in-line code expan-
sion. Dynamic compilation is thus more expensive than ST-80 and the resulting code is roughly five times faster.

The performance increase over conventional interpreters comes from several sources including: (a) caching
compilations to avoid retranslation (reinterpreting) costs, (b) inlining of operations known only at run time, and (c)
common subexpression elimination. SELF also optimizes based on various assumptions and compiles new code
when those assumptions fail.

The code generator for ST-80 has been ported to CISC and RISC architectures including the Motorola 68000,
VAX, MIPS, RS/6000, and SPARC. For ST-80, dynamic compilation generally takes about fifty native machine in-
structions to generate each machine instruction [Deutsch90]. Data formats are not specified for the Smalltalk-80 vir-
tual machine, so all operations can use the host machine data formats. Byte order and alignment problems are thus
avoided. Execution sessions can be moved from one system to another, and internal representations are transformed
when the session is restarted on the new machine.

8.5. Insignia SoftPC

SoftPC, by Insignia Solutions, simulates an Intel 80286-based IBM PC running MS-DOS. It runs on a variety of
platforms based on the DEC Alpha, HP-PA, MIPS, Motorola 68000 and 88000, and SPARC. SoftPC uses dynamic
compilation [Nielsen91] and allows the simulated IBM PC to execute self-modifying code [Bedichek90b]. SoftPC
only simulates and does not trace. Performance figures and implementation details are not known, however it is es-
timated that a 68030 at 30MHz will run applications about the same speed as an 80286 at 6-8MHz [Insignia91],
which indicates that it costs approximately 5-10 68030 instructions per simulated 80286 instruction.

8.6. Spa

Spa [Irlam93] is a set of tools which run on SPARC systems and are used to analyze the performance of SPARC ap-
plication programs. The main component of the Spa package is a SPARC simulator and trace generator. Tools
which read the traces (from a file or pipe) include SPARCstation 1 and 2 cache and pipeline simulators.

The application is placed in memory at its native location; the simulation and trace generation code reside
elsewhere. Simulation itself is about 40 times slower than running native. With trace generation the speed is about
600 times slower than running native.

Self-modifying code is handled correctly. Simulation and tracing continue in both the parent and child pro-
cess after a fork system call, and in the new program after an exec system call.

Application signal handlers (and, recursively, the functions they call) are directly executed instead of being
simulated upon receiving a signal, so no trace information is generated. The simulator loses control during applica-
tion signal handling, and so can’t provide the special handling that it normally would for certain application system
calls. If the application signal handler does not return normally (e.g. if it calls exit or longjmp), the simulator
does not regain control of the application.

Spa and Shade use similar core simulation techniques. Spa maintains a mapping from target PC values to ad-
dresses of special-purpose simulation code fragments. Each code fragment simulates one or more target instruc-
tions. The target PC is mapped to a host PC using a lookup table (with an organization similar to g88’s address
translation table). The current implementation does not demand-compile special-purpose simulation code but in-
stead dispatches to a routine (written in assembly language) that does general-purpose decode and dispatch simula-
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tion.

Spa, like Shade, simulates user-mode SPARC code and the SunOS 4.x operating system interface. Like
Shade, it assumes the programs it runs are correct, and does not try to reproduce target machine behavior in the
presence of errors.

8.7. ATUM, MPTRACE, Pixie, Titan, TRAPEDS

The analysis tools described in this section all run with identical host and target machines. None of the systems al-
low the tracing level to be changed dynamically, most punt on signal issues, and only ATUM traces dynamically-
linked code. None of the systems allow user-supplied pre- and post-instruction functions.

Pixie [MIPS86] is a program analyzer that reads the entire executable for a program and writes a new version
of the program that saves profiling information as it runs. Although the in-house Pixie is rumored to be quite power-
ful, the released (commercially-available) Pixie allows the user to collect only basic-block execution counts and text
and data traces. There is no provision for user-defined routines to collect or analyze data. All translation from the
original program to the self-tracing program is static, so the cost of translation can be amortized over multiple runs
of the program. However, because all translation is static, Pixie cannot trace code that is modified at run time, so it
is not possible to trace, e.g., dynamic linkers. The self-tracing program creates a data file as it runs and a separate
postprocessor reconstitutes the basic block counts from the data file.

A similar system, based on link-time code modification, has been implemented on the TITAN [BKLW89].
The tracing system traces multiple processes and can perform simulation on-the-fly. Programs run about 10 times
slower, not including analysis. A recent DECstation version traces both user-space and kernel-space MIPS code
under single-user Mach and Ultrix [Chen93].

MPTRACE [EKKL90] collects instruction and data references for multiprocessor programs. It is similar to Pix-
ie but annotates assembly code instead of object code, runs on a multiprocessor, and collects more trace informa-
tion. Multiprocessor tracing is harder than uniprocessor tracing because timing changes can change the address
trace. For example, timing changes can change lock contention, changing the time a processor spins waiting for
synchronization. MPTRACE tries to minimize timing distortion. It analyzes and annotates the program’s assembly
code. As the traced program runs it saves important values in an encoded trace . The encoded trace is later postpro-
cessed to produce the address trace. The trace is used for offline analysis, so multiple analyzers can be used on one
trace. Using a single trace makes analysis results comparable. If different incremental analyzers are used, the pro-
gram must be re-run and multiprocessor programs will give different traces on different runs. Multiprocessor appli-
cations typically run a factor of ten slower under MPTRACE. Most time is spent doing I/O, and all processors halted
for most of the I/O time, so programs typically see a factor of two dilation. Uniprocessor programs run a factor of
two slower, including I/O times.

TRAPEDS [SF89] is similar to MPTRACE, but the TRAPEDS analyzer is called incrementally at run time. Pro-
grams running under TRAPEDS on an iPSC/2 hypercube are a factor of ten or more slower, not including analysis
time. TRAPEDS also runs on an Encore Multimax shared-memory multiprocessor [SJF92].

ATUM [ASH86, SA88] is an address tracing technique based on modified microcode, and it has been used on
both uniprocessors and multiprocessors. In a sense, it is another example of a simulator running on the same
hardware that it simulates. ATUM runs a program and produces an address trace that is saved to a data file. The
analyzer is run offline. ATUM microcode simulates a cache to perform trace compression. ATUM requires a pro-
cessor with microcode and programs may run as much as 20X slower, not including I/O.

8.8. Moxie, MX, VEST

Moxie [Mashey88] translates MIPS binaries into VAX binaries. The MIPS compilers were debugged by (a) compil-
ing a source program for the VAX, (b) compiling the same program for the MIPS and converting it to a VAX binary
using Moxie, and (c) comparing the output of the VAX and MIPS-to-VAX binaries. Moxie was used only for user-
level programs; kernel execution was done on a separate interpreter. A “Moxied” MIPS binary runs about half as
fast as the same program compiled for the VAX.

VEST and MX [SCKMR93] are tools for running VAX and MIPS binaries, respectively, on platforms based on
DEC’s AXP. The tools are similar in many details and will be referred to below as VEST except where the differ-
ences are important.
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VEST is a binary-to-binary compiler. It reads a VAX target program and produces a host AXP program. The
host program attempts to produce exactly the same results as the target. Binary translation is used because straight-
forward interpreters are too slow and because the AXP has no microcode and thus cannot emulate the target instruc-
tion set. The goal is to produce code that runs as fast on an AXP as it would run on a real machine using the target
processor architecture.

Translation starts from known entry points and a flow graph is built following the target’s flow control. The
flow graph is then analyzed to remove unneeded operations, such as unnecessary condition code calculations, from
the host code. VEST can translate most parts of most programs, but some jumps are difficult to resolve and self-
modifying code simply “isn’t there” during binary translation so it cannot be resolved.

Most PC-relative and absolute jumps are translated into jumps from host code to host code. Register indirect
jumps and jumps to statically writable pages (writable at the time VEST is run) are handled by translating the target
address at run time.

Some code cannot be analyzed by VEST, so the executable produced by VEST also includes the original tar-
get machine code, and the program is linked with a VAX interpreter. The target code is protected so it cannot be
executed. Thus, jumps to the target code (such as a callback from a library function) cause a trap and invocation of
the interpreter. The interpreter returns to the host code when it encounters a branch to a target fragment for which it
has a corresponding host fragment.

Most target instructions can be implemented in a straightforward way with one or more AXP instructions.
VEST provides the user with cost/accuracy switches. For example, the user can select either slow and precise VAX
D-float emulation or fast but slightly less precise emulation using host execution. Similarly, the user can assert that
the target program never makes unaligned references, which eliminates code to emulate unaligned loads and stores.
Some instruction sequences need special handling to ensure atomicity. For example, the AXP does not address to
the byte, so multiprocessor writes to adjacent bytes require synchronization.

Signals are generally delivered at arrival. VEST translation can be arranged to ensure target instruction atom-
icity, although the code is less optimized. The signal delivery mechanism examines the host program counter at the
time of delivery. Atomicity of the target instructions is ensured by advancing or backing up the host program
counter (if needed) to a target instruction boundary.

Some machine features are not fully emulated. For example, the processor status register (PSL) is is not
available within exception handlers. The VAX page size is not emulated exactly. Big-endian MIPS programs (from
non-DEC environments) are not supported.

VAX condition codes are calculated either as positive/negative/zero or, when the application demands, they
are calculated completely.

Host register allocation is simple for the VAX target because the AXP has more registers than a VAX; for the
MIPS, some registers (such as argument registers) are permanently assigned to AXP registers, while others are as-
signed based on their (static) frequency. The remaining MIPS registers are assigned to memory slots and are loaded
and stored on demand.

Dynamically-linked libraries are written in host code and require a “jacket” to convert between the various
target and host calling and layout conventions. Function pointers that are passed to dynamically-linked libraries
need a similar jacket to perform conversions when host code calls back target code. When a host-code library gen-
erates an exception, the stack walk winds up in the VEST control loop’s (host code) stack frame and the handler for
that stack frame takes care of walking the (virtual) VAX stack frames.

SPEC benchmarks compiled for a VAX and converted with VEST are about 20% faster on a 167 MHz DEC
7000 than if they are run native on an 83 MHz VAX 6610. SPEC benchmarks that are compiled and run native on
the AXP are about three times faster than when they are compiled and run native on the VAX. SPEC benchmarks
compiled for the MIPS and converted with MX typically run two times faster on a 150 MHz DEC 3000 AXP Model
500 than when run native on a 40MHz DECstation 5000/240. Run native on the AXP, they are typically three times
faster than when they are compiled and run native on the MIPS.

Most VAX instructions have multiple side-effects: both registers and memory may be modified, and some
condition codes may be modified while others may be left set as the result of previous instructions. This makes
Shade-like dynamic compilation less attractive because the compiler must perform more analysis, making compila-
tion a larger percentage of the run time. Also, online flow analysis produces worse information than offline analysis
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because online analysis must “cut corners” to be quick. Programs produced with VEST need to interpret target in-
structions only for dynamic linking of target code, SMC, and callbacks. Since VEST performs no tracing, there is
no need for dynamically-adjusted trace collection.

8.9. Direct Execution by Disassembly and Recompilation

Shade incrementally translates target machine code to host machine code, then simulates by executing the host code.
An alternative is to perform an offline decompilation of each target instruction to some high level language, instru-
ment the decompiled code, then compile the high-level language [FC88].

Portability is excellent because the host machine can be any machine with a compiler for the high-level
language. The compiler can also optimize simulation and instrumentation code across several target machine in-
structions. However, some operations are simulated in detail even on machines that support direct execution be-
cause the optimizer is unable to map decompiled constructs to the available host operations. Condition codes are a
particularly difficult and expensive example.

Decompiling machine code is at best difficult because it is hard to tell what is code and what is data [May87],
so the technique is implemented as decompilation of assembly code. The technique can translate groups of target
instructions to improve efficiency; the reported implementation simulates instructions individually. Because the
technique relies on static compilation, self-modifying code cannot be traced. Likewise, the tracing level cannot be
changed dynamically. Exception and signal issues are not discussed. Simulation via disassembly and recompilation
was 6-8 times slower than native execution.

8.10. Host-Code Multiprocessor Simulators

Tango Lite [GH92] (a derivative of Tango [DGH91]) and PROTEUS [BDCW91] are multiprocessor simulators that
simulate the timing and behavior of shared (interprocessor) events. Programs are compiled for and executed on the
host. Operations are simulated if they are missing from the host. Tango augments assembly code with simulation
code. In PROTEUS, augmentation is performed by the compiler. Target timing and memory reference behavior are
derived from the host code, by assigning a target cost to each host instruction. This assumes the host and target are
“close enough.” However, since these simulators are used to study the general behavior of cache and network proto-
cols, the inaccuracies are typically tolerable.

Tango Lite and PROTEUS are designed to run programs on nearly-identical hosts and targets. The greater the
host/target discrepancy, the greater the “coloring” of the simulation. Tango Lite and PROTEUS do not work on arbi-
trary programs and do not support general self-modifying code (though in principal they could support dynamic
linking of instrumented libraries). Tango Lite and PROTEUS trace memory references; the tracing level can be
changed by setting flags for the functions that simulate memory references. The tracing of signals and exception
handlers is not discussed.

Per-simulated processor performance varies widely depending on the application, the number of target pro-
cessors, and on the detail of simulation. Tango Lite shows slowdowns of 10 to 750. PROTEUS shows slowdowns of
2 to 500. Most overhead is from the simulation of the caches and network and in context switching between simu-
lated processors.

8.11. Wisconsin Wind Tunnel, Unimplemented Instruction Libraries

In the Wisconsin Wind Tunnel (WWT) [HLRW92, RHLLLW92], programs are compiled to native code for the
SPARC processors of the Connection Machine CM-5. References to shared memory use fine-grained distributed
shared virtual memory [LH89]. Each 32 bytes of CM-5 memory has error correcting codes that can be set to cause a
trap on reference. WWT implements distributed shared memory two ways. When a page resides entirely on one
node, that node has page access permissions and other processors do not. When a page is shared by several proces-
sors, all of those processors have page access permissions. Any given 32-byte fragment in the page is owned by one
processor; other processors set ECC (error correcting code) bits for that fragment to an “error” value. A non-owner
reference to a location causes a memory error trap. The trap handler emulates the coherency mechanism, fetches
the memory, and changes the ownership. The traps also generate events that help simulate the program’s execution
time using event-driven distributed event simulation.

Many processor families have implementations where some members do not implement some instructions.
Executing a missing instruction causes a trap to an emulation routine.
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Both the WWT and unimplemented instruction libraries are examples of machine simulation where, like with
Shade-V8.V8, most operations run using native hardware. They demonstrate a fuzzy line between emulation, simu-
lation, and software implementation.

9. Conclusions

Shade is a virtual machine and program profiler. It emulates a target system by dynamically cross-compiling the
target machine code to run on the host. The dynamically-compiled code can optionally include profiling code that
traces the execution of the application running on the virtual target machine. Profiling information passes from
Shade to a user’s analysis routines through memory which reduces the delay and trace size limitations imposed by
I/O based profiling.

Shade improves upon its predecessors in several ways. First, Shade is fast. Shade simulates SPARC pro-
grams typically 2.3 (for FP programs) to 6.2 (for integer programs) times slower than they would run directly on
SPARC hosts. Second, profiling may be dynamically controlled by the user. The less application code that Shade is
asked to profile, the faster Shade runs. Third, profiling is extensible. The user has access to the virtual machine
state and may collect arbitrarily detailed information about the application program as it runs. Finally, where other
tools each provide a few useful features, Shade provides many of their features, all together in one tool.
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