SE-4

actions to be performed when such values are used;
(b) the number of operators in the BLM is very small (39 dif-
ferent instructions) because only a single instruction (such as
ADD) is needed for all the data types — since each value speci-
fies its own type.
Restricting the permissible operations on address values has two con-
sequences:
(1) it is impossible to overwrite data in a structure (hereafter
called a set) which a program does not have access to (legitimately,

hat " 1s) because the limit of a set is contained in any

pk

address value referring to that set;

(2) the indirectness of some value to he used by a program can
be transparent, since any commands can, using type information,
discover such indirectness and automatically perform necessary
indirect addressing; and

(3) an operation which would create an incorrect address is
caught at that time instead of many instruction executions later,
when such an invalid address can cause extremely obscure errors

after possibly catastrophic damage to data in memory.

Protection is extended to programs since they cannot be over-
written. Also, because the exact bit structure of instructions need
not be known, one more level of potential "bit twiddling' can be re-

moved from programming.

The BLM does have some restrictions, however, as well as a few
areas in which it could be profitably extended. For instance, since

each value in the BLM has an extra word of information associated with

SE~3

vector which serves as the memory of most computers. Indeed, one has
not paid the price for this transformation by implementing the initial
design, but must pay 'rent" as it were, in terms of storage allocation

and de-allocation programs to maintain those structures in memory.

The structures required in an IPS are, as can be seen from the
preceding chapters, not trivial. And, since storage management is
even more crucial in an environment where one of the functions is as
knowledgeable and unpredictable as the human user, these problems are

of primary concern.

Il1iffe's Basic Language Machine (BLM) [I1 68] differs from most
computers in several important aspects:

(1) memory has structure, and the overhead for representing that
structure in a linearly addressed memory (including memory manage-
ment) is a function of the BLM;

(2) addresses are not manipulable with the abandon allowed on most
computers, but can be used by a command set sufficient for the
purpose; memory protection is a very nice side effect of this, as
it is on machines such as the Burroughs B-5500.

(3) programs are not allowed to treat themselves as data: programs
may be treated as data only by a basic function of the BLM, its
Assembler; normal programs can do nothing with programs but exe-
cute them,

The implications of these three points are impressive. Each basic item

of the BLM has associated with it, type, size, and other information,

and hence

(a) one can have representations for undefined values and allow

S5E-2

complexity is handled by the CBM. Moreover, such a feature is desir-
able even in a system which is not expected to be moved from machine
to machine, because the notion of what should or should not be con-

sidered primitive by the CBM may depend to a large extent on measure-
ments gathered about the performance of the IPS once it is in "pro-

duction' use. Bottlenecks might then be eliminated by incorporating
specific operations or data structures as primitives in the CBM, es-

pecially if the CBM were implemented as microcode on a microprogram-

mable computer,

In the remainder of this chapter we will further develop a set
of characteristics for the CBM, without giving a specific insténce
from the set of machines which have those features. Appendix A con-
tains a design for a specific CBM, and is a good example of a member
of this set. However, it is not the only possible CBM, and there is
nothing sacred about the design (except to this author, being the
father)3 the design could be changed in a number of ways without being

non-representative of the set of all CBMs.

SE1 Relation of the CEM to Iliffe's RBIM

In building any large and complex system, no matter how well un-
derstood it may be, the process of creating and testing the compon-
ents, or modules, still presents an enormous task. Iliffe [I1 68]
has ﬁade the point that some of this complexity, rather than being
inherent in the algorithms used, is caused by the present form of com-
puters. One culprit to be singled out is the costly process of mapping

the data structures natural to some process onto the linear storage

SE-1

SE Design Considerations for a CBM

The CBM is intended as a base for an IPS, providing a set of
appropriate primitives upon which the IPS may be built. Those prim-
itives are suggested by the algorithms and data structures developed

in the preceding chapters.

While we can generate characteristics which we would like those
primitives to have, there still remains one major question: how much
of the complexity of the IPS should be in the CBM, and how much in the
rest of the system? One constraint on this is that the CBM should be
kept as small as possible in order that it have some ''inherent' export-
ability. On the other hand, operations which are common in the IPS,

such as subroutine calls, ought to be primitive in the base.

Another consideration is that the CBM should "hide" the ideosync-
racies of the hardware, such as different forms of arithmetic instruc-
tions depending not only on the type of operands, but also on whether
one or both of them are in registers, etc. Hence, the CBM would prob-
ably have only one ADD instruction, and the CBM Factored Interpreter
(abbreviated CBM/FI) would decide which particular hardware ADD to use
in a given case. But this implies that the CBM knows the types of
operands: it follows that the CBM data structures must contain infor-
mation about their type, size, etc., as an explicit part of their

"value)' much like Iliffe's BLM.

Of course, any particular implementation of a CBM/FI will make
specific design decisions as to how much is done in the '"hardware'' of
the CBM and how much in the IPS. Hence, the IPS must be able to use

the CBM is such a way that it depends only minimally on how much

5D-6

Of course, they are much more since they are in a suspended control
state and can be restarted from where they left off at some previous
session. This is a very useful feature for humans who need to be able
to set aside one task in order to work on another for a while, no
matter for what reason. It is also useful for tasks whose lifetime

is by nature very long,such as a personal budgetting or accounting

system, for instance.

In the next section we will give a set of design considerations
for a CBM, and we will be assuming a model of an IPS such as just

given.

5D-5

process connected to the other end of the port is activated. Later,
when control flows back across that port, the suspended process be-
comes active and proceeds from the point at which it used the port.
This is in contrast with subroutines whose control and variables be-
come non-existent when they return control. Such coroutine control
may be between two processes contained in a common process, between
two processes having nothing in common save the user's GLOBAL process,
or between processes belonging to different users. Indeed, logically,
processes should be allowed to execute in parallel as well as sequen-

tially, as in the RC-4000 Multiprogramming System,for instance [Ha 69].

Creation of a process from a prototype has much in common with
a subroutine call in that parameters may be passed, space is allocated
for the new process's variables, and control is passed to the process.
The only difference is that new processes need to have unique names
assigned to them, since their lifetimes are not as well ordered as are

the incarnations of a recursive function, for instance.

The creator of a process can be treated much like a subroutine
caller, by causing return-codes to be passed (along with control) to
the creator whenever an abnormal situation occurs in a process crea-
ted by it — except for the important distinction that the "returning"
process is only suspended, and not necessarily completely deleted.
Examples of such conditions are linkage faults (attempting to activate
a port which isn't attached to any other process) or a willful request

by a process to be deleted.

If processes can be kept around from interactive session to ses-

sion, it is useful to think of them as "files" in the normal sense.

5D-4

implementation of LCZ: each call had a set of return-codes which it

could accept from a called subroutine. The zero return-code implied
a normal return. If a non-zero return-code acompanied a return from
a subroutine, two situations could occur:

(1) the return-code was in the set specified by that call, or

(2) it was not.
In case (1), each return-code specified by the caller had a label
associated with it; on that return-code's appearing, control simply
transferred to the appropriate labelled statement. In case (2), a
return was done for the caller back to his caller, passing the return-
code back. The only other addition to this scheme was the option of
the caller to transfer td a specified statement whenever a non-zero
return-code not anticipated by him appeared. This allowed certain
routines to '"clean up'" and restore certain critical values to some
state before allowing the return-code to continue propagating back-

ward.

5D2B Coroutines
Coroutines were discussed in section 2D. There we described a
model due to Krutar [Kr 69] in which instances of coroutines are

created from prototype programs (looking much like normal subroutines)

which communicated via "ports!' The creation of a coroutine (or
process—they are really the same concept) involves the estab-

lishment of a stack to contain local variables and control information
within the process, since it may contain and use subroutines. When
a process activates a port (by asking for input over that port, or

attempting to move output across that port), it is suspended, and the

5D-3

of ALAN, BILL, and JIM would have the following scope of names (and
names only — this has nothing to do with control!) in such an IPS:

SYSTEM

IE

==]
—
B
| =

Exactly how objects are shared between processes belonging to
different users with sufficient security guarantees is discussed by

Lampson [La 69] and we will not delve into it here.

SD2 Control Within an IPS

Given a universe of discourse as we have suggested, what can one
do with it in an IPS? Since the named elements of the universe are
programs and values, it is clear that at least we expect to execute
those programs, which will operate on the values. The point of con-
cern is with the means of controlling execution. (An excellent source
book for a treatment of control structures in general is Fisher's doc-
toral dissertation [Fi 70]). We will deal with two primary means,

subroutine and coroutine control.

SD2A Subroutines
The only non-standard concept which we have advocated in connecs=

tion with subroutine control might be termed return control. By this

we mean the ability to place control at some point (in the past) in the
call hierarchy, distinct from the normal one-level return from a sub-

routine. A simple mechanism for accomplishing this was used in the

5D-2

may contain subprocesses which at their level are mutually indepen-
dent., If A is a process, and B an object such as a variable or a
function within that process, then its name, reflecting its heredity,

is A,B (this was originally discussed in section 2F),

Not every process is contained in another super-process (or par-
ent process), and so each user has one process which we will call
GLOBAL, which contains all his other processes. Since containment
by a process is a naming phenomenon, each process possesses a
symbol table which "describes" all of its contained objects:

a symbol table is part cf the description of a process. Of course,
not only processes may possess names; functions and Algol-type blocks

may also have names which are local to them.

There is another level of naming which involves the IPS and its
variables. Since we are advocating bootstrapping as a means of IPS
contsruction, its variables must be named in the same manner as the
user's. Moreover, since it is most often the case that an IPS resides
within a time-sharing operating system, facilities are needed for users
to share objects among themselves. For a single user, the GLOBAL pro-
cess (and its Global Name Table, the GNT) establishes a means by
which his processes may share variables, And, at the system level
there is a process called SYSTEM which may be said to contain (a) each
user's GLOBAL process, and (b) objects which are to be shared among
several users (we have called these EXTERNAL). A better notation for
GLOBAL would be a unique identifier for each user, such as his "account
number" with the system. If we use first names of people as account

numbers (for the sake of example), then a user population consisting

5D-1

5D A Model of an IPS

A model of how an IPS should be structured has been dispersed
throughout the foregoing chapters. We will here summarize that model.
We do this for two reasons:

(a) to provide a unified summary of that model, and

(b) to supply structure for the discussion of features needed in a
CBM (which discussion is begun in section SE).

This model of our envisioned IPS has two main aspects of interest to

a user of such a system: the naming of objects and the control struc-

tures which relate those objects together as programs and values.

5D1 The Named Universe of an IPS

People generally divide large tasks into smaller ones, grouping
some tasks together because of some commonality of purpose (in their
design), and making these groupings as independent of one another as
possible. Such independence simply means that two such groups share
(almost) nothing implicitly with one another. What they do share is
generally expressed as a "language' called an interface (inter-faith?)
language, and by defining these interfaces well, it is felt that one
can gain some control over the complexity inherent in large systems
[Di 69]. Also, in the day to day process of formulating and attacking
problems, some task groupings are independent of others for the simple
reason that they are not "solutions' to a common family of problems.

We have been calling such groupings processes, after Krutar [Kr 69].
More precisely, by a process is meant a collection of named objects
whose identity is subordinate to the process's name. This implies a

tree-structured naming convention for "objects!' especially if processes

5C-6

__________________ Exportability
Line

the
system

Figure 5C-2: Bootstrapping with a CBM

In the diagram, everything below the dashed line is independent of [M]
and therefore easily exportable. Writing %ﬁ now can be seen as a
means of including L below that "exportability line" by making it in-
dependent of [M]. Indeed, the system can be moved between machines
by rewriting the machine [B] for the new machine and simply moving

everything below the exportability line onto the newly implemented

CBM on the new machine.

SC-5

factored interpreter. So, while the IPS would undoubtedly itself be
faster if written in S, say, it is nevertheless the case that the
speed of programs in C is not dependent on this fact as it would be

in a purely interpretive system where the efficiency of the underlying
system is a large factor in the speed of execution of programs writ-

ten in that language.

5C6 A Simplified Bootstrapping Model

We can simplify and clarify figure 5C-1 if we replace the parts

of the diagram having the form:

by a transition of the form:

This transformation is analogous to viewing B as a machine in its own
right. Then, recalling that we need gﬂ" no matter how obtained, we
can change figure 5C-1 to 5C-2 below, in which the bootstrapping pro-

cedure stands out more clearly,

5C-4

T is not in any way dependent on the host computer [M], sincg it is

written in L and produces parsers expressed in B.

5C4 The Initial IPS

Once T and L are available,the remainder of the system can be
implemented using them, T for syntax and L for the more basic routines
of the IPS. The system's growth beyond the primitive routines, such
as the arithmetic routines, can be fairly amorphous: as soon as new
C-constructs are implemented, they can be used in implementing other
C-constructs. Indeed, some routines may be entirely written in a sub-
set of C, without using L at all, or may contain mixtures of C, T and
L. Step IV, therefore, is not as simple as figure 5C-1 would seem to
imply, and realistically it should be viewed as a number of iterations
over that section of the bootstrapping. During this phase, much of
the system is self-implemented, thus giving its implementers many of
the interactive facilities which the user of the finished system will

have.

5C5 The Final IPS

It is worth repeating that the final version of the IPS (and,
in fact, any version during the bootstrapping sequence) will run at

the hardware speeds of the host computer since B is written as a

5C-3

5C1 A Factored Interpreter for the CBM

Since the CBM is the base upon which the IPS is to be built,
it must be implemented before anything else. It can be written in any
language S which is suitable and compilable on the machine[M]. We call
the machine language of the CBM, B; it is written in the form of a
Factored Interpreter in order that anything expressed in B will be

able to run both interpretively and as compiled code for [M].

S5C2 The Conversational Base Language

Once B is running on [M], we begin the task of producing L,
the "assembler language' for the 'machine" [B], to translate prog-
rams in L into programs in B. For the first implementation, L can al-
so be written in the language S. The next part of this bootstrapping
step, writing L in itself to produce object programs for [B], is done
solely for ease of exportability of the system later. Once %E- has
been obtained (the last part of Section II in figure 5C-1), moving L
to a new machine [N] can be accomplished without reprogramming L at
all; only B, the machine language of the CBM, written as a Factored

Interpreter, needs to be moved by hand to new machines since L runs

on [B] itself, which is invariant under such movement.

5C3 The Parsing Language

The parsing language T is similar to that found in chapter 3
(an adaptation of Tree-Meta [EER 68]) and is used in building the
final conversational system, whose language is C. T is assumed to

produce the type of parse trees needed by the TFI. Note, also, that

: implement the
CBM interpre-
ter in S,run-
ning on [M]

5C-2

IT: implement CBL (=L)

III: implement the par-
ser, T (T includes
L as a sublanguage)

IV: implement the in-
teractive system
C
BB

V: use CBM FI to ob-
tain final running
system C

MM

Figure 5C-1: Bootstrapping Network for an IPS

Programmable extensions to the CBM data structures, flexible control
mechanisms, and filing (and program saving/restoring) capabilities

are among these items.

5C Bootstrapping an IPS using the CBM

Without going into the details of the Conversational Base Machine
until later, we will outline a procedure for bootstrapping an IPS using
it, and its language CBL (Conversational Base Language). An important
feature of this method of bootstrapping is that the CBM is implemen-
ted as a factored interpreter (or FI, see chapter 3). The concept of
an FI has come directly from the thesis research and was initially
presented in chapter 3. This means that an IPS built on the CBM as a
base has the advantage of interpretive execution, but is able to rTun

at the hardware speed of the host machine,

The procedure for the bootstrapping process is modelled in figure
5C-1, using the notation of Sklansky [Sk 68] outlined earlier in this

chapter,

The diagram is rather large and cumbersome, and we will give a
simplified model later; but for now, we will describe each step of the
bootstrapping process in detail. The steps in this procedure are the

following:

5B-3

creation of correct programs without all the effort normally re-
quired to map each problem onto the linear store of such machines;

(2) to raise the level of machines to a point more commensurate and
helpful with the common operations done on present day computers
using high level languages;

(3) to provide a uniform level of control within which certain clas-
ses of operations (such as indiscrimately using arithmetic oper-
ations on addresses) are invalid, and in which data structures
are recognizable and flexible objects, instead of vectors of bi-
nary words with no inherent, consistent structure.

Another consideration voiced by Iliffe is the need for non-linearity

and flexibility of program, data and control in the framework of

"on-line interaction'" — a point which we have used as the key for the

development of the CBM, especially with regard to the work preceding

this chapter.

One surprising facet of Iliffe's machine is its small number of
operators; this can be directly traced to the fact that the BIM mem-
ory li structured. It has only one ADD instruction, for instance, in-
stead of the plethora usually found on normal computers. Also, since
it can be described in terms of an underlying Von Neumann type machine,
implementing the BLM on most computers would be little trouble. This
enhances the smallness of Iliffe's machine and increases its use for

purposes of bootstrapping and inter-machine system mobility.

There are, however, some respects in which the BLM is either not
general enough or is unsuited to interactive programming, and it is

these which have been expanded or modified in the CEM design.

5B-2

FORTRAN processor; the conversion was only made easier if one exis-
ted. Even without an available FORTRAN, most of his work has been
transferred from machine to machine in terms of only man-days or man-
weeks, a notable accomplishment when compared with the problems nor-
mally encountered by individuals and companies when converting pro-

grams between machines.

The notion of a set of basic primitives in which to build has
provided much of the motivation for the CBM. Exportability is inex-
tricably bound up with bootstrapping, because one only wants to export
bases on which systems have been constructed rather than transforming
entire systems themselves. In our case, this set of primitive data
structures and operators has taken the form of a machine design, al-
though a simple language with the same sort of primitives would prob-
ably do equally well. The machine framework seems apt because of the
present appearance of microprogrammable computers, and because of the

level of detail of the CBM's description.

5B1 Iliffe's Basic Language Machine

Another reason for presenting the CBM as a machine is that many
of the ideas for it were suggested (and, in some cases were already
developed) by Iliffe [Il 68, Il 69] in his description of the Basic
Language Machine (BLM). Iliffe's goals, in condensed form, can be
statéd as the following:

(1) to better define the interfaces between programs and data (as
opposed to Von Neumann's concept of instructions and data being

indistinguishable [VN 58]) in order to aid debugging and the

5B-1

i is available, it is presumably not a

for [N]. However, once
difficult task to design T%%T since the code production of these two
translators contain much in common (L’c;L)’ and this would be

reasonable if the language L were to be implemented only on [M].

The important point is that by introducing some extra design

work to write for the first implementation, as well as an

L
LT
extra (but automatic) step during bootstrapping, we can more easily
move L from machine to machine simply by rewriting L' for the new ma-
chine. This is certainly an idealized picture of the issue of boot-
strapping and exportability, but it does lend some insight, and we

will see the above method II reappear later in the development of a

bootstrapping network for an IPS.

SB History of Exportability

Few systems have been developed which even aimed at ease of ex-
portability. The ALTRAN effort [Ge 70], the AED system [Ros 67], and

Waite's Base for a Mobile Programming System [Wai 69] are a few which

have had this as one of their primary goals. All of them sought to
reduce the number of basic primitives needed in order to bootstrap
their respective systems. Both the ALTRAN effort and Waite's work
described as much of the set of primitives as possible in a standard
subset of FORTRAN, the rationale being that most machines have at least
FORTRAN supplied with them. Like the AED group ‘they then built a
macro system using the set of primitives and proceeded to build the

rest of the system on this base.

However, Waite's work was not dependent on the availability of a

5A-3

by means of assembly language or whatever is not relevant here)
L}

so that one had ﬁﬁ-.

(2) L was written in terms of L' (i.e., in terms of a proper subset
of itself) to translate into M, vis.

. L ' L
(3) Executing W on [M] with T

desired compiler for L on [M].

L.
L'M °

as input yielded , the

==

Diagram 5A-2 below shows this method, which we will call method I:

L_
L™

Figure 5A-2: Method I Bootstrapping

Alternatively, in place of step (2) above, one could write E%ET and

insert it as data in the following way, called Method II:

Figure S5A-3: Method II Bootstrapping

Method II has the advantage that only the initial L' has to gene-

rate machine code. Thus, when moving such a system to a new machine

[N], it is necessary only to write %ﬁ since E%TT is still valid

SA-2

translation of the language in which S was originally written into
M). The execution of %ﬁ- on machine [M] with éﬁ" a translation

I
program for L into B, written in S, as its input data is represented

in the following diagrammatic way:

S_
MM

mlt-‘
o

3=

Figure 5A-1: Execution Diagram
where %ﬁ- is the program being run on [M] (the arrow indicates this),

L 5
%E is the input data for the program, and Mg 1S the result of run-

as data. That is,

() -

The exact rules governing such simplifications of "execution expres-

ning %ﬁ- on [M] with

cnl]
o

sions" is given in [Sk 68] and will not be further defined here.

Now, the output of such an execution may itself be program or
data for another execution, thus forming a network of programs and
data. The execution of these programs can be considered to proceed
sequentially or in parallel as long as one program has finished before

it output is needed by another.

Classically, bootstrapping a language L onto some machine [M]

meant that

(1) a subpart of L, denoted by L', was implemented on [M] (whether

SA-1

5A History of Bootstrapping

Sklansky et al [Sk 68] have suggested a notation for describ-
ing translation systems which is also useful for diagramming bootstrap-
ping operations and movement of systems from machine to machine. In
this notation, a program is represented by a fractional form such as
%: an algorithm q expressed in language L. A translation algorithm
is denoted as %3 standing for an algorithm (not a program) which trans-
lates programs written in language A into equivalent programs in lang-
uage B. And, a program written in L for the algorithm % (i.e., a
translator program from A to B written in L) is expressed as %{%-= %E'
We will also characterize an interpreter for the language A, using

; . ; ; A
the language B for interpretation, and written in L, as ip

A program for a machine [M], written in some language S, must
have the form %ﬁ in order to run on the machine: i.e., we must have
an algorithm %-which is itself expressed in M (probably obtained

from a previous

5-1

5 Bootstrapping an IPS (With an Eye to Exportability)

This chapter deals with the construction details for an IPS.
In particular, we give a bootstrapping sequence in terms of what parts
must be written and when. Then we will outline a base for bootstrap-
ping an interactive system. It is hoped that keeping this base suf-
ficiently small has also introduced some ease of exporting the resul-

tant system from machine to machine.

This bootstrapping base is presented in the guise of a '"ma-
chine' called the Conversational Base Machine (CBM); that is, a mem-
ory organization and instructions for operating within that framework
are developed. Many of the basic constructs which we have used in the
algorithms and data structures previously discussed will reappear as
primitive (or almost so) in the CBM, and we will attempt to mention

those as they are presented.

One thing needs to be stated about the CBM: although it is
given here in all its generality, it is not necessarily intended that
every IPS will implement the CBM as described. It is a spectrum of
machines: at its most flexible extreme, it can handle many of the
tasks of an IPS itself, such as type checking, detection of undefined
and monitored values, automatic coercion of operands, etc.; at its
most rigid extreme, it could be viewed as a set of macros for some
machine's assembly language, which macros only really save the size
of code written by the implementers. We will describe a '"moderate"
version of the CBM, taking advantage of the fact that the IPS above

it is held responsible for some things, while the CBM checks others.

4C4-4

almost certainly not true of a separate interpreter and compiler

for a language (nor indeed for two different compilers for the same

language!)

4C4-3

One problem with this is encountered by control statements
such as the IF-statement which depend on the execution of some code
in order to determine which subnodes to activate. Such rou-
tines need to know that they are being called to compile so that they
will not attempt to access values which do not exist due to the sup-
pression of execution. Also, any nodes which depend on certain at-
tributes of the values computed by a subnode must be able to expect
those attributes to exist despite the fact that no execution occurs;
if each such node has this information as part of its description,
this requirement is satisfied.

When each node (in the tree to be compiled) has been call-
ed, there may still be more than one code string with calls (comp-
calls or interp-calls) in other code which uses them. These can
then be replaced by the.actual code of the referenced node in the

same manner as described in section 4C2 (Simple Jumps and GOTO's) .

Once this is done there will exist only one code string for the
pra:zxv'a‘rn.

One further pass over that code can replace all the indir-
ect relative jumps by direct relative jumps using the [FIRST:LAST]
pairs for that code string. At that point, the parse tree can be
considered expendable and its storage reclaimed.

Hence, with little extra mechanism a TFI system can also
function as a compiler — indeed, an incremental compiler. And
since the same routines are used when compiling as when interpreting,
there is a good chance that the compiled version of a program will

act the same when jnterpreted, which is

4C4-2

some group of statements or procedures.

4C4A Compile-time Bindings and Assumptions

When the IPS is commanded to compile some program, it
could do so without requiring a complete set of declarations for
the necessary variables by simply using the default bindings which
the TFI would use. It could also require the user to verify each
of those bindings by displaying them and requesting approval for
each, These are strategic decisions and are best left to indivi-
dual users to pick their favorites. But what if it is desired that
certain variables be allowed to remain flexible with respect to cer-
tain of their attributes such as their type? Then it is necessary
for the user to tell the system that those variables are to be left
unbound — just as it was desirable for the user to give bindings
when the system was trying to be flexible and he wanted some fixed

bindings.

4C4B The Compiling Mode of a TFI

In one sense we have already shown the TFI behaving as a
compiler in the REVERT algorithm. However, simply turning off exe-
cution does not make the TFI compile the entire program since not
all subtrees will necessarily be executed. In order to make it a
compiler we employ the rule that no node is activated to compile
until all its subnodes have been compiled. This can be viewed as
a depth-first, left-to-right tree walk in the parse tree and will
cause each node to generate code. Of course, any node which already

has valid code will simply be passed over.

4C4-1

4C4 Compiling with a TFI

Although the TFI mechanisms offer a sizable increase in
speed over normal interpretation, it is not as as efficient as a
reasonable compiler might be. In the interpretation/compilation
spectrum a TFI allows a program to change representation in order
to flow between the mentioned extremes. But, like the ancient
Greeks who did not understand the regularity (or "bindings'") of the
stars, the TFI stays within sight of the interpretation coastline
in order to be able to respond quickly to semantic weather changes.
And, for a TFI to be able to produce good compiled code, it must
be able to rely on some set of bindings on the variables and pro-
grams involved. The catch, of course, is that there is no law of
gravitation of variables, so the TFI must turn to a higher authori-
ty for its information. Control over those bindings ultimately
lies in the domain of the human user; without some statement of
constancy on his part, no bindings can be considered as fixed.
Hence, in order to allow the TFI to truly compile a program, the
user must make a contract with the IPS not to change that program
or the variables on which it depends,while the program is active.

Given this contract the IPS can feel free to discard al-
most all the hooks necessary to allow re-interpretation, including
the parse tree, almost all dependency chain elements, multiple code
buffefs, and indirect relative jumps., Other information such as
the symbol table and the program text might be relegated to second-
ary storage. For simplicity, this contract could be made via a

simple statement such as COMPILE 8, where B is the description of

