A-28

Case (ii): S is a data or program acCessoT.

ADD 1] Q 6 \Q§§§ data accessor or
QQ}\ program accessor

In this case, the value to be used is that referenced by the accessor,

with Auto/Fetch or Auto/Execute employed to ensure a resulting N-value.
Note that if S signifies a program accessor, the function which changes

the operand type to one suitable for ADD (called a transfer-function)

performs the action of executing the program addresgsed

'LY S in order to obtain an N-value.

[01]: ADD ,D

This case is basically the same as [10], except that the oper-
and specified by the top-of-stack element is added to the N-value
specified by D. Auto/Fetch and Auto/Store (its counterpart for the

purpose of storing) may be invoked for the stack operand and/or D.

The format of the instruction and its operand is similar to

the [10] case:

Note however, that in this case, D§N since we require an accessor in

ADD 0

=

order to know where to put the result of the ADD; the same is true
of the destination operand in all these cases (except, see below con-

cerning condition code setting).

A-27

As an example of the different possible forms of an instruction,
we shall describe "ADD" with its various possible operands
(the "label" in front of each diagram denotes the value of the presence-

bits for that format):

[00]: ADD

xop Ple &\\\w

This format adds the operands specified by the top two stack elements,

replacing them by a single result value which is their sum.

[10]: ADD S
This form of the instruction adds the operand specified by S to the
operand specified on the top of the stack. The result replaces the

item which was on the top of the stack.

There are two possible cases, depending on T_, the type of S:

S’
Case (i): TSEN, where N={undefined, binary word, integer, real,

byte word, field descriptorl} .

\
.ADD 1 0 TSsN ::5\ actual operand (e.g., 45)

N

This case adds the value immediately following the instruction to the
top-of-stack item. It corresponds to a class of operations sometimes
termed "immediate'" on many computers, meaning that part of the data

for the operation is contained in the instruction itself.

A-26

<OPR,op1-description,opz-descriptionP
where op-description is a pair <presence-~bit,operand-type>. The
presence-bit indicates whether or not the corresponding operand is
present or defaulted. The operand-type is related to the basic CBM
types, with some exceptionsj the basic types which are allowable as
direct operands in instructions are listed in figure A2-1. Notice
that this class includes types 0 through 8 and type 14. Now, if an
accessor is to be used as a literal instead of the address of the ac-
tual operand which is to be used, then types 9, 10, 11 and 12 are
used in place of types 6, 7, 8 and 14 respectively. This allows us
to place a reference to a value on the stack using the same instruc-
tion as would be used to put the value referenced by that accessor

onto the stack.

A “bare' CBM instruction, without operands, has the following
format:

6 1 1 4 4

OPR Pg| Pp Tg Tp

Figure A10-1: Format of a Bare CBM Instruction
Pg and p, are the presence-bits for the source (first) and destina-
tion (second) operands; and TS and T are the types of the operands,
if present. The operands have been denoted as source and destination
to indicate the fact that movement is to the destination, whether the
instruction is arithmetic or logical in nature. Thus, ADD S,D adds
the value denoted by S to that denoted by D, and places the result

at the place denoted by D.

A-25

table themselves). A process also contains the name of its parent or
creating process, except for the process called SYSTEM which has no
parent. How this information relates to interprocess control and

communication is discussed later.

AlQ CBM Instructions

Up till now we have given only sketchy examples of the form of
instructions on the CBM, 1In this and the following section we will
give a detailed description of most of the CBM operations, including
instruction and operand formats, and the applicability of some oper-
ations to non-unit sets. The extension of operators to programmably
extended data structures will be described as well as the set of op-

erations which may act on accessors directly.

The basic instruction formats of the CBM allow zero, one or
two operands. Thus, OPR S,D might indicate a two-operand instruc-
tion. But either or both of S or D can be defaulted (in most cases),
in which case the corresponding operand is assumed to be the one on
top of the stack (or may be the second item on the stack if both op-
erands are defaulted). This scheme allows some ease for translators
on the CBM: simple Polish postfix notation [RR 64] can be produced,
as well as operations to and from memory. This philosophy has in
fact been implemented on at least one commercially available com-

puter, the Digital Equipment Corporation PDP-11 [DEC 69].

In order to allow such defaulting of operands, the format of

an instruction must be a triple:

A-24

The lowest part of memory contains three different types of
information:

(1) interrupt locations for "hardware'' errors and exceptional con-
ditions; these locations contain a program accessor and a status
word, which will be loaded into the CBM registers PRP (PRogram
Pointer) and PSI (Program Status Information) respectively, after
"manufacturing" a call from the currently executing program so
that the interrupt routine may be programmed much like a proce-
dure;

(2) state information for the CBM, including a table naming the ob-
jects in the CBM, "ports' over which input and output may flow
between the CBM and I/0 devices or other machines, and status
information for those ports;

(3) a single, special PAC which is the first free PAC in memory; it
cannot be allocated and therefore acts as the head of the pri-

mary free storage list.

Now, the CBM is not just one of the "virtual' machines outlined
above, but many. Each such '"machine' is called a process and has a
unique 'name" (a 32-bit integer) by which it is known within the sys-
tem. Data structures can be communicated between processes and one
process can invoke another while suspending its own execution until
later re-invoked by its invokee, thus mirroring a coroutine structure
[Kn 68,Kr 69,DN 66]. The form of interprocess accessors will be
given later.

Each process contains at least one name table describing the

nameable items in that process (including the process and the name

A-23

A9 The Process Concept in the CBM

Thus far we have been speaking of the CBM as one machine with
a stack and some other memory. Diagram A9-1 represents the layout

of the CBM:

Available

Memory

Stack Limit

Stack Base

Status infor-
mation, int-
errupt infor-
mation, etc.

Figure A9-1: Layout of a CBM

The stack base is at some location B in memory (B is fixed in
a given implementation, but left unspecified here), and the stack is
allowed to grow upward so long as it does not exceed Stack Limit. The
remainder of memory is initially one or more PACs which can be allo-

cated for program and data structures.

The stack's allowable upper limit is indicated by a register
called the SLR (Stack Limit Register), and an attempted PUSH which
would overflow the stack will cause an interrupt. The CBM may then
attempt to increase the allowable stack limit or link stack segments
together. The TSR (Top of Stack Register) always points to the top

element of the stack.

A-21

In a global stack accessor, the displacement field is made rela-
tive to the bottom of the stack instead of with respect to any display
register. The difference between a stack accessor and a global stack

accessor is that the DISPLAY INDEX of the global form is all 1-bits.

Note that such an accessor cannot be used to access an object
to which is was not given access: for, if an attempt is made to pop a
stack cell whose reference count is not zero, an interrupt occurs.
Hence, even if a global stack accessor is copied into a location not
in the stack, it will not be allowed to exist longer than the item

to which it refers.

A-20

called a Mark Stack Control Word (or MSCW, type 13), and which also plays

an important role in the procedure call sequence.

Associated with the stack is a set of Display Registers which

allow procedures which have a common lexical scope to share values

on the stack, even if the procedures are used recursively. A stack

accessor consists of two parts: a display index and a displacement.
Each display register points to an MSCW ; an accessor, there-

fore, represents an item with a certain displacement from that MSCW.

The format of a stack accessor which accesses items using the display

registers is the following:

1 4 11 16
M

O|TYPE DISPLAY DISPLACEMENT
N| (=8) INDEX

Figure A8-2: Simple Stack Accessor

Each display register contains a simple address of an MSCW in
the stack. Although we do not specify how many display registers
there should be, display 0 is always a copy of the current display,
and is identical with the LBR mentioned earlier. This means that

using DISPLAY INDEX = O will always access only local variables.

When an accessor is needed which is to access an object which,
while in the stack, is outside of the current display, a different
form of stack accessor is used. We will call such an accessor

a global stack accessor. This situation occurs when an accessor 1is

passed as a parameter with a call from a non-local procedure; therefore

the display registers are not held in common with the called procedure.

A-19

can only be a unit set, this is sufficient for most purposes.
Values which are to be monitored require one more bit, and a reference

count is needed.

One advantage of this implementation is that, knowing the size
of all possible primitive values (the maximum is 3), we can determine
a fixed amount which can be added or subtracted from the stack pointer
to accomplish the actions of '"pushing" and "popping" the stack. Since
these operations are performed as CBM primitives, the stack is safe
in the same sense as discussed for the general memory. For our CBM,
this fixed amount is 4 words: one for header information, and three

for values.

The stack items can be formatted as in figure A8-1; notice that

only one word of type information is needed for each item.

TYPE REFERENCE COUNT

=20 =

3 words

w
<
—_— N —

Figure A8-1: Format of CBM Stack Elements

Variables which are local to a routine can reside in the stack.
Space is allocated for them at procedure entry time using the PUSH
operation, and they are accessed relative to a register called the

LBR (Local Base Register) which points to a special stack element

A-18

together for searching purposes. It occupies space normally used for
an HSD address and is unnecessary here since PACs are primitive. The
ADDRESS OF PRECEDING FREE PAC field can be used to implement a storage
management system in which adjacent free PACs can be coalesced in
order to retard the fragmentation of storage, a common phenomenon in

such systems [Kn 68].

A8 The CBM Stack

The CBM stack is a primitive data structure which can be used
to hold sets of certain forms and control information for procedures,
functions, interrupts, etc. The stack can also be used for intermed-
iate values of expressions, for local variables, and for parameters

passed during procedure calls.

The form of atomic elements on the stack is somewhat different
then for atomic elements in general memory. This is done for two
reasons: (1) the stack, being the primary control mechanism, needs to
be implemented efficiently; and (2) if only primitive values are al-
lowed on the stack, then no size field or HSD address is needed to

maintain stack integrity.

One piece of information which does remain constant for sets,
whether in memory or on the stack, is the type field; therefore, each

item in the stack is tagged with its type. Since the set described

on the list headed by A, then the B-PAC is coalesced

with those into one large PAC.

It is left to the reader to assure himself that most allocation

systems can be implemented using these primitives.

In the case of storage allocation, SPLIT always yields a PAC
as result and the act of making a PAC into any other type of structure
is done simply by changing the type and possibly the size fields of
the set header. Normally, the contents of the set itself are left
untouched, except when the new set is to contain accessors. In that

case, each entry is initialized to zero, indicating an invalid address.

The format of a PAC is given below:

TYPE ELEMENT SIZE REFERENCE COUNT
[=PAC] [=1]
LIMIT ADDRESS OF NEXT
FREE PAC

ADDRESS OF PRECEDING
FREE PAC

> LIMIT-1 words

-
Figure A7-1: Format of Primitive Allocation Cell

The field labelled ADDRESS OF NEXT FREE PAC is used to link PACs

A-16

by programs written for the CBM. Steps (b) and (e), however, require

manipulations of sets which must be primitive in order to maintain

storage integrity. Those primitives and a brief description of their

functions follows:

SPLIT A,B

MAKE A,B

UNMAKE A

UNMAKEJ A,B

causes the PAC referenced by B to be split into two
PACs, the second of which is of size A; the address of
the second PAC is returned on the CBM's stack.

causes the set at B to be changed by the CBM into a
set of type A. If this operation were not primitive,
we would need some way of altering the header of a

PAC to make it look like a set of type A -- this can-
not be done without abandoning the integrity of storage
and, hence, the operation is made a primitive. If a
PAC is linked in a free list then MAKE also unlinks it
from the free list; therefore, a free storage list is
prevented from containing anything but PACs.

converts the set referenced by A to a PAC; it is up to
the user's program to link the resultant PAC into a
list of free storage if he so desires. If he does not,
the PAC is automatically linked to the primary free
list maintained by the CBM.

A is interpreted as the head of a free list; B is the
address of a set to be free as in UNMAKE. An UNMAKE is
done and the PAC is linked into the free list headed
by the PAC to which A refers. If, in this process, the

B-PAC is found to be adjacent to one or more free PACs

A-15

freeing memory in the conventional sense. Consideration (1) is sim-
ply a constraint on this process which says that no arphans are al-
lowed: each word of memory must belong to some set. This philosophy
toward memory management is part of the AED Free-Storage Package

[Ros 67], a simplified version of which was used in the LC2 system.

For the purposes of the CBM design we will divide allocation
into four steps:

(a) finding a '"piece of storage' P large enough for the set to which
it is to be allocated;

(b) dividing P into (possibly) two sets, one of which will be allo-
cated, and the other of which will remain as a "left over"
fragment;

(c) correcting any linkage of the sets in free storage which may be
necessary;

(d) returning a reference to the allocated set as the value of the
allocation function; and

(e) making the allocated set have the desired type.

Now, we would like to build fast allocation systems for data
structures with a high rate of birth and death, so as to minimize
that overhead. Lists of fixed-size cells are such a class of struc-
~tures. In the AED Free-Storage Package, Ross describes such a storage
management system. While it is not necessary that the CBM implement
such a system directly, it nevertheless behooves us to provide allo-

cation/de-allocation primitives which aid such methods.

Steps (a), (c¢) and (d) in the above outline can be accomplished

A-14

occupies the same field as used for a reference count in the set head-
er, the reference count field must be large enough to contain an ad-

dress.

When a set header is a hetero-header, the HSD address field is
used to "define'" the class of extended structures to which that set

belongs by pointing to the HSD for the class.

A7 Allocation of Sets

Storage allocation in the CBM raises a number of interesting
questions. Initially the CBM has a special accessor and header for
the real memory of the machine, which memory is viewed as a primitive
hetero-set called a PAC (Primitive Allocation Cell). It is this
structure from which storage is allocated for all sets, and to which
storage is ultimately given back when no longer required by systems
in the CBM. Thus, all the structures of the machine will receive

(although possibly indirectly) their storage from this initial set.

Two immediate problems present themselves:
(1) to keep track of all the sets allocated from the primary memory,
and (2) to determine how storage is "passed" from set to set. The

latter question is the primary problem in storage allocation.

In the CBM, the storage used by any set is said to belong to
that set. Since it previously belonged to some other set, which we
can think of as the parent of the set to which it now belongs, the
act of passing that storage, or more properly, responsibility for

that storage, from set to set is the mechanism for allocating or

A-13

by the requirements of the other fields in word 0, including the
"unused' bit (which is used when such a two-word block acts as an
accessor value). Finally, the MON bit is used to indicate monitoring

of a set.

The value of an accessor is also two words in length and is an
almost exact copy of the header of the set to which it refers. The

value is shown in figure A6-2 below:

M S
0| TYPE |/ ELEMENT SIZE SET ADDRESS Word 0
N I
LIMIT SIZE or ADDRESS OF HSD Word 1
INDEX VALUE

Figure A6-2: Format of Accessor Value

This format is applicable only to program and data addresses (tvpes

6 and 7) and not to stack accessors (type 8).

Only two fields differ from those in a set header: the S/I
field, and the SET ADDRESS field. The S/I bit indicates whether the
accessor is a reference to the set as a whole or to an individual
element of the set. In the latter case, the limit field is interpre-
ted as an index (in terms of words) of a single element of a set.

When used in this way, the index field can be made to sequence from
element to element in the set. This is not allowed to go past the end
of the set; the CBM checks each index change against the limit field

in the set's header.

The SET ADDRESS field points to the referenced set. Since it

A-12

a homo-header is reasonably clear: an instance of a structure is ini-
tially created as a homo-set of binary words, plus a header, and fin-
ally, one special machine function is executed which can chanege the

header to be a hetero-header.

A6 Headers and Accessors

Accessors are closely connected with set headers since they
act as '"'remote' set headers for accessing purposes. The format of a

set header (both for homogeneous and heterogeneous sets) is the fol-

lowing:
M| 4 ‘\\: 10 16
O| TYPE Qt ELEMENT SIZE REFERENCE COUNT Word O
N AN
16 16
LIMIT SIZE ADDRESS OF HSD Word 1

Figure A6-1: Format of Set Headers

Some of the fields in the header require explanation. First,
it must be stated that the decision to use a 32-bit word for this CBM
is completely arbitrary. Wherever this choice has influenced the de-

sign we will attempt to state that fact.

The size of the limit field must be the same as an address
field in order to allow at least one set to be as large as the entire
address space. This is a nice feature when starting up a virgin ma-

chine since all of memory can then be contained in that initial set.

The size of the element-size field has mainly been dictated

A-11

descriptors (HSD) and figure A5-2 is an example of one such. It is

the HSD for the hetero-set given in figure A5-1 above.

HSD

accessor[2k] ag

Ok -1
binary[6] (integer[1])

(byte[2])

(data-addr[2])

Figure AS5-2: Example Hetero-Set Descriptor

The elements of the homo-set of k accessors refer to the rou-
tines which are to act as the programmatic extensions of the CBM
primitive operators for homo-sets. Among these operators are a cre-
ator, destroyer, sequencer, indexer, etc. Some of the routine addres-
ses may be left undefined in the case that certain functions are not
defined for a given structure. For example, one does rot normally
index into a queue, but simply detaches items from the front end and
attaches new items to the tail of the queue, so an indexer might not

be required for such a class of structures.

The second homo-set in the HSD (binary [6]) is a set of binary
words which are a ''template" for instances of structures of the class
defined by that HSD: they are skeleton headers for homogeneous sets

in the guise of binary words. The manner in which such a word becomes

A-10

Hetero -set [11]
inwgm{1] 978
1
:Blc!
byte[2] AiB}CID
I
Wixiy:i z
[I 1
data-address|2] accessor -
value

Figure AS5-1: Example of a Hetero-set

Note that the limit value for the hetero-header is 11 (eleven)

words, and includes the words occupied by the headers of the sets

comprising the hetero-set.

The header for a hetero-set contains information about the set
similar in nature to that given by a homo-header. There are some ma-
jor differences, however. Since it may not be feasible to assign a
unique ''type" to each defined structure (especially since we intend to
allow the user to define his own), and since we must keep some form of
structural template for describing classes of structures, we will use
an actual machine address as the '"extended type'" for structures. This
address points to an instance of a special class of hetero-set which
is used to describe structures. It is special in that it is consid-
ered primitive by the CBM and therefore needs no other data structure

to describe it. Such '"meta-structures' are called hetero-set

A-9

an accessor for it: however, storage reclamation operations
always use the actual header on a set, and not any acces-

sor for it in order to insure correct storage reclamation.

A5 Heterogeneous Sets

Thus far we have defined what could be termed a hardware base
for the data of the CBM. Since it is viewed as a base, we place on
it the constraint that programmed extensions of these data structures
are to be handled in the same manner by the CBM as are homo-sets.
The only requirement for this is that all necessary operations such
as sequencing and accessing be provided by the program which "defines'
such extensions. The main generalization which we wish to make in-

volves heterogeneous or mixed sets: i.e., sets whose component ele-

ments may be dissimilar, unlike homo-sets in which all the elements
are of the same type. We will show later that the elements of a homo-
set can themselves be heterogeneous sets (hereafter called hetero-sets)
so long as they are all instances of the same hetero-set class, and

are of equal length.

An example of a hetero-set in which the first element is an
integer, the second a homo-set of two byte words, and the third an
accessor for another set of the same form is diagrammed in figuré AS5-1.
The semi-isolated boxes to the left in the diagram represent the in-
dividual homo- and hetero-headers; the number of words in each set is
indicated by the number in brackets following the type of the set
written in the headers. The headers, of course, are contiguous with
the elements to the right of them; the separation is made here only

for clarity.

An accessor in the CBM courresponds to the concept of address-
value in most computers. Accessors may refer only to the header of
a homo-set, and may not point directly to an element of the set. This
restriction is primarily for purposes of storage reclamation and is
not as severe as it appears, since the elements of heterogeneous sets
(extended data structures) can be homogeneous (or heterogeneous) sets
which may be directly referenced. It is true, of course, that while
accessing an element of a set there must be a simple address gener-
ated, but it is only temporary and, in a sense, exists solely in the

bowels of the machine, inaccessible to programs running on the CBM.

Since it is impossible to do arithmetic on accessors - this is
our major departure from a classical Von Neumann machine - we can
guarantee that accessors behave as we have described. An accessor
looks very much like the descriptor section of a set header (and,
indeed, is created by copying parts of the header) but also contains
an address pointing at the beginning of the set. There are two reas-
ons for this redundancy of information in the accessor and the set
header:

(a) if accessors are created and modified only in '"'correct"
ways, which are under control of the CBM, then we can save
an extra memory access to a set header each time that we
need to access an element of the set;

(b) by allowing some "gafe!" modifications to be made to an
accessor, we can get the effect of accessing subsets of
the original set; also, if we wish, the type of a set can

be changed in context by simply changing the type field in

A-7

Using the limit field, we can check for out-of-bounds accesses.
Memory protection is provided in large part by the manner in which
sets can be accessed; i.e., by such bounds checking. Also, checks on
accessors being incorrectly modified will prohibit the changing of
memory elements which, while not in some set, have the misfortune of

lying "just beyond' it in the CBM's memory.

The reference count in a set header is used for reclaiming the
storage occupied by a set when it is no longer needed. As long as
there is an accessor referring to the set, the reference count will
not be zero. When the reference count becomes zero as the result of
the last remaining accessor for it being destroyed, then the set will
also be destroyed, and its storage reclaimed for future use. This
method does not provide a guarantee against sets becoming accessible,
but does automate the common case of a set which is not part of a

ring structure.

A4 Accessing Homogeneous Sets

The actual accessing of an item in a homo-set is accomplished
via an accessor for the set. The accessor may contain a field which
is considered as an index value. The actual element is then accessed
by computing the element's displacement from the header for the set
as

(index-value)x(element size) + address-of-header + header-size
where ''address-of-header' is part of the accessor value, and '"header-
size'" is the value 2 (since headers, as will be seen, are two words

long).

A3 Atomic Elements

Primitive values, as described above, do not exist without
structure as in most computers, but have a structure imposed on them
by appending a header to each set of elements (recall that we stated
that a primitive set was assumed to contain elements all of the same
type). All data manipluation operations in the CBM then have access
to the header of a set and may use that information to aid them incor-
rectly performing their specific transformations or for checking for

error conditions in the use of data.

Sets may be unitary (one element), or be a contiguous, index-
able,homogeneous set. The empty set is also allowed, but its type has
little meaning. A homogeneous set (which we shall call a homo-set)
always has two parts, unless it is the empty set: the set header,
which is two words containing information describing the elements of
the set (this structures the memory of the CBM), and a value set, which

is a contiguous group of primitive values, all of the same type.

Each set has fields in the header with at least the following
information:

(1) the number of words in the set, called the limit of the

set,
(2) the type of the primitive values in the set,
(3) a monitor bit for the set —if it is 1, then any normal

access into the set will cause an interrupt,

(4) a reference count of the number of accessors which ref-

er to the set at a given moment — used for storage recla-

mation purposes.

There is one special character consisting of all zero bits which is
considered as an '"ignore' character. This is done since it is unreas-
onable to expect all byte strings to be a multiple of four bytes in
length. As well, ignore characters may lie anywhere within byte
strings, thus making operations such as concatenation of strings or

deletion of a substring within a string much easier.

Field Descriptor (type 5)

The value part of a field descriptor consists of three numbers
a, B, and y packed into one word. It is used in conjunction with an
accessor (type 6, 7, or 8) to access the field in the ath element of
the set referenced by the accessor, and consisting of bits B to y in-
clusive. If B>y then the value '"fetched" is zero. This type's inclu-
sion is simply in recognition of a most common operation in most large
programs which attempt to concerve memory space by packing a number of

different pieces of information into one word.

Accessors (types 6, 7, and 8)
Address values in the CBM are not as simple as on most machines;

for this reason, we choose to refer to them as accessors or references.

An accessor contains the address of the memory location of the object
being referenced, a limit-value, which is the number of words in the
referenced object, and the type of the referenced object. Stack ac-
cessors (type 8) are somewhat more restricted than this, but must meet
many of the same other constraints as program and data accessors. We

will discuss accessors in much more detail later in the appendix.

occupied by an indefined element may be used to contain codes indi-
cating different forms of undefinedness, or to trigger special ac-
tions. The length is variable only so that the storage for an unde-
fined element can be overlaid by any of the other basic primitive

values, some of which are two words in length.

Binary Word (type 1)

This is simply 32 bits, the standard representation on most ma-
chines. The individual bits are manipulable by means of various
shift operations, as well as by instructions using the field descrip-

tor (type 5).

Integer (type 2)

We will choose simply to leave unspecified the exact format for
integers — whether uncomplemented with a sign bit, or one's or two's

complement notation is not germane to this discussion.

Real (type 3)

The exact form of floating-point numbers, or reals, is also left
unspecified. Note, however, that it is possible for two or more
sizes of reals to coexist on the same machine, simply by allowing

different lengths, as for type O.

Byte Word (type 4)

A byte word (or character word) is simply a 32-bit word which
has conceptual boundaries dividing it into four characters of eight

bits each, thusly:

| T
byte 1 | byte 2! byte 3
: '.

byte 0

primitive data types follows.

Of the data types in figure A2-1, we will mention only the first
eight (types 0 through 7) here. The remainder are described through-

out the rest of the appendix.

TYPE CODE LENGTH OF ALLOWABLE AS
VALUE OPERAND

undefined element 0 1 or 2 yes
binary word 1 1 yes
integer 2 1 yes

real (floating-point) 3 2 yes

byte word (characters) 4 1 yes
field descriptor 5 1 yes

data address 6 2 . yes
program address 7 2 yes
stack address 8 1 yes
extended data structure 9 unknown yes (by extension)
hetero-set descriptor 10 H+ K* no
Primitive Allocation Cell 11 23 no
instruction sequence 12 20 no
mark-stack control word 13 2 no
inter-process accessor 14 3 yes

unassigned 15

Figure A2-1: Table of Basic Types in the CBM

* H is the number of words necessary to provide addresses of the
routines to be used as program extensions of CBM operations on
homogeneous sets; K is the number of words necessary to specify a
packed template for the hetero-set.

Undefined Element (type 0)

This "value'" is closely associated with much of the philosophy
behind the CBM. Accessing (as opposed tc storing into) an undefined
element will normally result in an interrupt. In some cases, when
manipulated by certain instructions, no interrupt occurs, but all
arithmetic instructions, for instance, on undefined elements will

cause interrupts. The ''value' of the one or two words of storage

A-2

efficiency or comprehiveness, for instance, should not require fun-
damental changes in data structures or the programs which operate on

them.

Another function which shall be represeﬁted in the data struc-
tures is monitoring. Whenever a "monitored'" set is accessed (or, al-
ternatively written into), an interrupt sequence is initiated, and
may result in the activation of a routine, due to some expression
(called '"continuously evaluating' by Fisher [Fi 70])assuming the val-
ue true. Thus, the routine so activated might be used to trace all

changes to a variable, uses of a given function, and so on.

There are two basic types of sets in the CBM: homogeneous, in
which each element is of the same type, and heterogeneous, in which
the elements may be of different types. The latter case raises a
number of difficult issues, whereas the former is fairly simple and

causes no large problems.

A2 Primitive Values

Primitive values are those which are directly representable and
manipulable by a hardware machine. Since this group may vary from

machine to machine, we only give a representative sample here.

For our purposes we will assume the hardware memory of the CBM
to be organized into words and characters (bytes), with bytes being
k bits each, and words being some multiple of k bits wide, but at
least 2k bits. In'the discussion to follow, we have arbitrarily

chosen k to be 8, with words of 32 bits. A description of the

