4C3-21

point is reached, since it is only there that it and the operand stack
can be '"out of phase''. Hence, beyond the interpretation-point, PERFORM
will use the operand stack for call-information also; this keeps the

time during which calls must be treated specially to a minimum.

The second loose end has to do with the fact that the old value
of A is on the operand stack even though the leftmost VALC(cA) created
code to fetch the new value of A onto the stack, and the ADD node
will have trouble deciding whether to assume the type of the value
which the VALC node describes (INTEGER) or the value on the stack,
which is REAL. The answer is that this situation normally would not
have been allowed to exist because of the Visual Fidelity arguments
(and algorithms) in sections 4B3A and 4B3B. This inconsistency was
allowed here only for the purposes of being able to use a familiar

example.

Nevertheless, SETUP does need to be extended to cover the case
when a variable is changed after it has been used in a statement and
will not be used again in that execution of the statement. In that
case, the easiest action is simply to mark the code invalid but finish
executing it. This is a viable method since the code will be seen to
be invalid the next time that statement is used, and the original,

simple TFI can handle that case.



4C3-20

The state of the MULT node is (INVALID,NON-TERMINAL,HAD THE POINT)
since CONTROL is in the range [3:9]. Hence, ACTION 1 is taken and

MULT begins. The call-stack is

SETUP.6 ADD.2

MULT's first action is
1 PERFORM *1;
which activates REVERT, The state of the VALC(aB) néde is (VALID,
TERMINAL,HAD THE POINT); we are finally at the interpretation-point!
The sequence of actions by REVERT for a node in this state is

(1) copy code [3:5] from OLD CODE into the new buffer, making

the ADD node

;ﬂ%i:({A,B},valc’(A) call(B) etype-real)

(2) set EXECUTE CODE to TRUE (i.e., turn execution back on);

(3) branch to the "right' place in the code buffer; the right

place is (CONTROL - XFIRST + B.FIRST) = (5 - 3 + 3) = 5 in the

new code buffer.
The call-stack is

SETUP.6 ADD.3 MULT.2

and when the code is executed, REVERT will simply return to MULT.2,
and interpretation will continue with REVERT still being activated on
each PERFORM because REVERT SWITCH remains TRUE. When control final-
ly reaches SETUP.6, REVERT SWITCH is set to FALSE, the OLD_CODE is

(and the separate call-stack can be dispensed with).

There are two loose ends which need to be tied. The first is

that the separate call-stack is only needed until the interpretation-



4C3-19

activated by the PERFORM, since REVERT SWITCH = TRUE. The state of the
ADD node is (INVALID,NON-TERMINAL, HAD THE POINT) since the CONTROL
certainly resided in its code. The action taken is ACTION 1: allow

ADD to operate with execution remaining off.

The operand stack remains as it was when REVERT was started:
(the heads of stacks are to the right)

operand-stack: A

The (separate) call-stack looks like
call-stack: SETUP.6
and ADD is now allowed to execute, ADD's first action is (see section
3D1: The TFI Algorithm):

1 PERFORM *1;
to call VALC(aA) to interpret. REVERT intervenes, and the state of
the VALC(aA) node is (INVALID,TERMINAL,NOT THE POINT) since CONTROL
does not lie in [1:2], which is this node's code-position pair. There-
fore, the necessary action is ACTION.1. The call-stack is now

SETUP.6  ADD.2

Ultimately VALC will produce new (and probably different code),
vale’(A), to push the value of A onto the operand-stack, but since
EXECUTE CODE = FALSE, it will only be generated and not executed.
VALC then returns to the ADD routine. The environment is now the
following:
call-stack: SETUP.6

operand-stack: A

the ADD node: ADD: ({A},vale'’(4) )

Line 2 of ADD now executes "PERFORM *2" and REVERT intervenes.



4C3-18

4C3D An Example of the Use of REVERT

We will trace the application of REVERT for the case of the example
of A + B * A above, noting which action is taken at each node in the
tree. The trace will have a form similar to that used in chapter 3:
line and call depth, the call-stack, the operand-stack, and the tree
node being "executed" are displayed. A separate call and operand-
stack are needed in order to avoid incorrect intermingling of operands
and call information caused by the fact that the calls are taking
place after the time they normally would had we been interpreting.
Since call-markers are linked anyway, this simply means that another
stack is used for calls, which stack links into the former at the
point where REVERT returns control (line 7 in figure 4C3C-5). From
that time on the call and operand-stacks are again one single stack.

We will assume the tree in figure 4C3C-4 and begin applying REVERT
to the ADD node. First, we do SETUP for REVERT, This will leave the
following assignments to variables:

EXECUTE_CODE = FALSE;

OLD_CODE = vale(A) call(B) etype-real vale(A) real-mult real-add

The ADD node (g8 is its address) now has an empty buffer and de-

/A{

pendency set:

And, finally,
REVERT SWITCH = TRUE.
Also, the value of CONTROL is assumed to be 5, placing it within the

code call(B).

The ADD node is now PERFORMed from line 5 of SETUP, and REVERT is



4C3-17

REVERT (B)

NODE + B.PTR

NODE.VALID?

true false
XFIRST « B.FIRST; (NODE.NODE_TYPE="terminal"?
XLAST « g.LAST; A NODE.VALID)
true t false
REVERT NODE + true;

LENGTH < XLAST - XFIRST + 1;
BUFFER [NEXT :NEXT+LENGTH] +
OLDCODE [XFIRST :XLAST] ;

continue

B.FIRST + NEXT;
NEXT « NEXT+LENGTH;
B.LAST + NEXT-1;

CONTROL e [XFIRST:XLAST]?

true false

EXECUTE_CODE « true;

BR_POINT + B8,FIRST+CONTROL-XFIRST;

"ecall" the code at BR_POINT

return to parent -

Figure 4C3C-6: The REVERT Algorithm




4C3-16

(VALID,TERMINAL,HAD THE POINT): do ACTION 4,
[VALC(aB) in the example]

REVERT HERE is a switch which tells the VALC or DESC node that it must
finish its previous action which was stopped before completion (if,

in fact, that has a valid meaning) and then create new code to take
its place. Each of the other actions are fairly straightforward., A
flowchart for the described algorithm follows, is a pointer to the
subnode descriptor in the parent node containing a pointer (PTR) to

the subnode being PERFORMed and the [FIRST:LAST] pair for that sub-

node,



4C3-15

attaches a new code buffer for B, and calls the routine specified by
the node at B with EXECUTE CODE set to FALSE in order to initially
suppress the execution of generated or copied code. REVERT SWITCH
is tested by each TFI routine upon entry via a PERFORM and if it is

TRUE, the following part of the REVERT algorithm is activated.

For each node which is PERFORMed while REVERT SWITCH is TRUE
there is a set of three mutually exclusive conditions which describe
the state of that node:

(1) it is either terminal or non-terminal;

(2) it either has valid code or is invalid {such as ADD]; and

(3) the interpretation-point resides in it or it does not.

For each combination of these three state sets we can list the action
to be taken at that node:
(INVALID,NON-TERMINAL, NOT THE POINT): (ACTICN 1):allow the routine

[not in the cxample]
to operate; execution stays

off.
(INVALID,NON-TERMINAL,IIAD THE POINT): do ACTICHN 1.
[ADD,VMULT in example]
(INVALID,TERMINAL,NOT THE POINT): do ACTION 1.
[the first VALC(cA)]
(INVALID,TERMINAL,HAD THE POINT): (ACTION 2): REVERT HERE<«TRUE;

[not in the example] do ACTION 1;

(VALID,NON-TERMINAL ,NOT THE POINT): (ACTION 3): copy appropriate

[net dn ths exzaple] piece of OLD CODE into new
code buffer.

(VALID,NON-TERMINAL,HAD THE POINT): (ACTION 4): do ACTION 3;

[not in the example] EXECUTE_CODE«TRUE; GOTO cor-
rect place in new code.

(VALID,TERMINAL,NOT THE POINT): do ACTION 3,
[not in the example]



4C3-14

that node, some action must be taken and execution resumed. The ac-
tion to be taken is a function of the routines VALC and DESC (Descrip-
tor Call); They are the only interpretive routines which must be

cognizant of the reversion to interpretive control.

Although we could predetermine exactly which node is the criti-
cal switching point from non-execution to execution, and set a bit
in that node to czuse scme action, we must not do so. For it is pos-
sible that control may never reach that terminal node. After all, its
code is not necesscrily invalid, znd the TFI will not reinterpret
nodes with valid code. And, if cne of its parents has valid code, re-
interpretaticn will bypass that point. In that case, the bit in that
VALC or DESC [VALC(uB) in figure 4C3C-4] would remain set — incorrectly —
o we are censtrained to do this checking "en the fly" as each
PERFOCRM of an interpretive ncde tzkes place (see Appendix 3A for a

description of PERFORY).

In zny case, we will start the fzked interpretaticn by the fol-
lowingz simple sequence. B8 is the address of the node to which the

code was attached [the ADD node in figure 4C3C-4].

1 EXECUTE_CCDE <« FALSE;

2 OLD _CODE <« 8.CODE_STRING;

3 B.CODE _STRING « a(NEY CCDE EUFFER);

4 REVERT SWITCH + TRUE;
-5 PCRFORM B.ROUTINE(B); CC.0MENT: begin fzke interpretation;
6 REVERT_SWITCH « FALSE; COMIENT: clean up - we are finished;
7 RETURN to original caller of the code;

Figure 4C3C-5: SETUP for the REVERT Algorithm

This program saves the old (and now invalid) code, creates and



4C3-13

vale(d) call(B} ctupe-real valc(A) real-mult real-add
+

Figure 4C3C-3
for the expression A + B * A under the assumptions of the previous
examples. The '"4" represents the execution-point as being within the

code which accomplishes a call on B,

The parse tree, with dependcncies and code position pairs noted,

is:

2
ADD: ({A B}, valc(A) eaEI(B) etype-real vale(A)

real-rult real—aad 3
(1:2]7 /m

VALC(aA) : {A} MULT

[3:5]”’* {6:8]
-
VALC(e3):{B} VALC(cA):{A}
Figure 4C3C-4
The number above each code piece represents = postulated length for
that piece. Since it is A vhose semantics have changed, we have mark-

ed the dependency elements for A with on "*"; internally this would

correspond to a validity bit having been set to zero (or FALSE).

Now, because of previous consideraticns we know that control

must reside at a VALC node which produced cecde for a fumction call
[VALC(aB) above]. It is also possible to detect exactly which terminal
node this corresponds to using a simple tree search directed by the
[FIRST:LAST] pairs on each arc. Thus, in the zbove, the centrol poin-
ter is at position 5 of the code buffer, say. Therefore the right
subnode of ADD is suspect, and MULT's left subnode, being terminal and
responsible for the code from positions 3 to 5 inclusive, is identi-

fied as the culprit. Thus, when the ''faked" interpretation reaches



4C3-12

discussion of REVERT. Scattered throughout this development are ref-
erences to the above example, enclosed in brackets. These references
supply concrete points of comparison for the more general algorithm

being described.

The code string being executed at any one tine belongs to some
node and represents the code for the entire program whose parse tree
is rooted at that node [ the ADD node]. Now, if we have partially
executed the code at that node, and wish to re-create interpretive
control to the interpretation-point then the following problem arises.
Under interpretation, the call hierarchy would probably indicate that
we were somevhere in the middle of the routine for the topmost node
[the ADD node] as well as any nodes which it had called and which had
not returned [MULT in figure 4C3C-2]. e must get to that same situ-

ation without disturbing the environment of the user's program,

The statement which was invalidated had been partly executed;
therefore we cannot simply reinterpret it from the beginning since
that could easily affect the environment. We must be able to cause
interpretation to start at the node to which the code is attached
without actually executing anything until we have reached the inter-
pretation-point. Two things are implied by this: (1) that we can
detect when the interpretation-point is reached; and (2) that we can
turn execution off and on at will. The second requirement has already

been dealt with and poses no problem.

The first requirement is somewhat more difficult. It and the
REVERT algorithm as a whole are best illustrated by the example of

executing the code:



4C3-11

unlikely (indeed, undesirazble) that cne routine could be written which
could 21low for this verizbility and still re-create the interpreta=-
tion-point correspending to the execution-point in cede previcusly
created by those routines. For after all, the teason that this must
be done is that the compiled cede is invalid. If we had been inter-
preting the statemcnt, at least one of the interpretive routines

would have preduced code which was different thoa that existing (the
VALC(cA) nodes in the exanple will probably produce different code).
In generzl, therefore, we mcke no assumptions ebout the way in which

a routine produces ccde.

A situztion wtmder vhich REVERT :ay need to be used is the
following: A function call occurs in a statement, cnd during the exe-
cuticn of that function, somz semontic chonge occurs vhich invalidates
the code to which ccntrol would nmormzlly return on coxpletion of the
called function.

Another possible circumstcnce might bs a user-generated interTupt
when the user wishes to suspend cxccution and regain control of the

interaction., However, we restrict this interrupt to be processed cnly

[

at (a) the end of a statement, (b) at the cnd of one iteration of a2
FOR-loop, or (c) at a function call. In this way, it is guaranteed
that the user will regain ceoatrol quickly but that the only uay that
an expressicn can be incompletely executed is if it callied a2 function
which has not yet returned a value. This is exactly what occurred in
the example. The REVERT algorithm, then, is activated vhen a return

to an invalid code string is attempted, and this is the only way in

which it can be activated., (/e will now procced to a detailed



4C3-10

ASSIGN: ({F},desc(F) )
g [--+ represents a PERFORM]

DESC (aF): ({F},desc(F) )

VALC(aA) : ({A}, MULT :
vale(4)

LB
VALC (aB) : ({B}, VALC (aA)
ecall(B) etype-real)
+

Figure 4C3C-2: The Interpretation-point for F <« A + B * A

VALC(aB) node in the code it produced to call the function B. The
name of the REVERT game is to 'redo" statement 12 interpretively, al-
lowing the x-routines (ASSIGN, VALC, ADD, MULT) to pretend they are
executing until the interpretation-point is reached. This will es-
tablish the call hierarchy and interpretive control without disturb-
ing the program's environment. Then we will turn execution on and
allow interpretation to continue from the interpretation-point as it

would normally,

One of the prime constraints in re-creating interpretive execu-
tion from the execution of compiled code is that it be transparent to
the interpretive routines involved. That is, the TFI-type routines
need not be aware of this special mechanism and should only reflect

the normal code creation/execution mode.

A second constraint which has a strong influence on this is that
the routines to be used to reestablish interpretive control must be
the normal TFI routines themselves. Each interpretive routine has its

own way of making decisions and performing x-actions, and it is highly



b LW Ry

IPS: N =1

IPS: N = 0 (these lines typed by B)

At this point, assume that the user interrupts the system. The
IPS responds with
IPS: INTERRUPTED AT LINE 1B
and gives the user control at his terminal.

Since we are at line iB and N is 0, we nust be zbout to Teturn
from B to the original incarnation of F which was called from line 1G.
hen control returns to F, the execution-point will be in the nmiddle

of line 1C2. Let the compiled cede for line 1C2 be

desc(F) vale(d) call(B) ctype-real vale(4) real-mult real-add store
A
I

Figure 4C3C-1: Compiled Cede for F « A + B * A
The execution-point is denoted by the '"#". Ue will change A's seman-
tics while we have control at the terminal, and then allow the program

to resune exscution:

DECLARE INTEGER A; A « 35

GO
IPS: RUNNING FRCY LINE 1B

A was previously zssumed to be REAL; we have made it an INTEGER and
told the progrzm to continue. Now, when control returns from B to

line 1C2, the code in figure 4C3C-1 will be invalid (because we changed
A), the execution-point is as shown in figure 4C3C-1, and we have cre-

ated a situation where REVERT is needed.

Assume we had been interpreting instead of executing compiled
code: the parse tree for line 1C2 is shown in figure 4C3C-2 as if each

node had its own code buffer. The interpretation-point is at the



4C3-8

since it includes the control involved in calling interpretive rou-
tines as well as executing any ccde produced. Nevertheless, these are
meant as parallel notions, and when vwe speak of the execution-point
and interpretation-point together, they are always assunzad to be equi-

valent in terms of the user's progran.

It should be pointed out that the situatiocn with which we are
dealing is not unccizen in cn IPS. Since exccution and text alteration
czn be interleaved, the user can interrupt his rumning progran and,
using direct statements, change the type or valuz, etc. of any varichble.
Consider the following short interaction (the program is essenticlly
that given in figure 332-1). Lines typed by the user are indented,
and those typed by the system or the user's progrom are preccded by

“IPSE,

1 PROCEDURE PRCG;
1A FUNCTION B;
1A1 TYPE N;
1A2 IFN#0
1A2A THEN B « F
1A23 ELSE B « 0
1B END
1C FUNCTION F;
1C1 N+« N - 1;
1C2 F+« A+ B *A;

1D END
1E N« 1;
IF A« 1;
1G F;

2 END

PROG; COMMENT : execute PROG; (this is a direct statement)



4C3-7

4C3C ‘The REVERT Algorithm

In chapter 3 we showed how a TFI system could respond to seman-
tic changes, as long as those changes occurred between the execution
of statements. However, what about changes which affect a statement
which is only partially executed and is executing compiled code? The
compiled code is very myopic toward such changes and will simply per-
form as if these changes had not occurred. What is needed is a mech-
‘anism for rescuing the too inflexible compiled code from such predica-

ments.

If a statement is being interpreted (by a "normal" interpreter)
when a change to some variable occurs, it can respond to that change
by using the context exactly as it exists (change and all), rather
than presuming some previous context;—-which is, of course, what the
compiled code does. If we could cause the system to revert to inter-
pretive mode vhen control attempts to return to the invalidated code,

our problem would be solved; that is the approach to be used, and the

controlling algorithm will be called REVERT.

We will define execution-point to mean the point which was next

to be executed in the compiled code. Assume that we had been inter-
preting the same statement as was being executed. Then, the TFI would
have been in the act of executing code created by an interpretive rou-
tine, and executing a piece of code identical to that at the execution-
point in the compiled code when the change was discovered. This point

we will call the interpretation-point ; it is equivalent to the execu-

tion-point insofar as the program being executed is concerned. The

interpretation-point is a more complex concept than the execution-point



4C3-6

An example of the use of the EXECUTE_CODE option occuzred
in the discussion of the IF-statement., The code created
for jumping around other code is not in reality executable while
the statement is being initially interpreted since the code to
be jumped to may not necessarily exist. Ilence, the IF routine

sets EXECUTE_CODE to false while generating the test and jump

to ELSE code string. It does the same with the interp-call put
into the code to cause interpretation of the THEN CLAUSE at some
later time. Other routines could rcqgire the creation and exe-
cution of code but wish not to save it: some simple immediate
statements could be handled this way, hence the existence of SAVE _

CODE.

The means by which a node acquires code from its subnodes
requires clarification because not every node has a code buffer
of its own anymore. A problem only arises when a node such as
a statement node, which has its own code buffer, wishes to pass
back only a call on its code rather than an actual copy of it.
In that case it need only make the current code buffer what it
was when the routine was entered and then use the CODE routine

to place a comp-call into that buffer without executing it.



AC3-5

for correcting already compiled code when interleaved execution/

alteration is allowed.

4C3B Generalizing the Code Routines

Before discussing the generalization of the TFI to handle
dynamic execution/alteration interleaving, we need to describe
a few necessary changes to the CODE routines which output and
execute code as requested by the TFI routines. Indeed, we have
already used some of these features in the discussion of the in-
ternal relative jumps above.

The CODE routine, as given previously, performs the follow-
ing actions:

(1) move code to code buffer and substitute parameters

into it;

(2) execute the generated code;

(3) change the buffer index so that further code will fol-

low that just placed in it.

Now, the first action must always be done if either of the other
two are to be performed. However, action (2) is not required

in order to do (3) and (3) is not necessary unless the code is
to be saved — indeed, if (3) were never done, the TFI would sim-
ply degrade into a tree interpreter.

We propose to make actions (2) and (3) optional and depen-
dent on the values of two logical variables EXECUTE_CODE and
SAVE_CODE. If EXECUTE CODE is true then the code will be exe-
cuted, otherwise it will not, Similarly, the code will only be

saved if SAVE_pODE.is true.



4C3-4

re-established later. In the case of variables on the dependency
chain (meaning that they are references to this variable),
apply case (a) to those entries and then use the SCOPE algorithm
to attach the reference variable to the correct semantics entry
and incarnation of the deleted variable.
Case (c¢):

Either there are code sequences in the scope of B using
X; or there are not. If not, then there is nothing to do. As-
sume, therelore, that code sequences using Xy exist but that
they depend on another semantics entry for Xy Now, we will
check each code string,C, on the dependency chain from that
semantics entry as follows:

(1) using n. to start, search the parse tree in an up-

C
wards direction until a numbered node is encountered;

(2) if that number has an initial sequence which is the
same as the level of the newly declared variable, then
mark the code string as invalid and delete it from the de-
pendency chain being searched.

(3) move to the next element on the dependency chain if
there is one, and repeat this procedure from step (1).

Thus, we will have removed and invalidated all code strings af-

fected by the added declaration. This completes the proof.

The theorem imposes a requirement on code strings, name-
ly that they must contain,in a header, at least a reference to
the parse tree node to which it is attached. This solves the

problem of detection; the next two sections will give a method



4C3-3

those variables.

Let SC be the list of dependency chain entries associated
with C and let ne be a reference (in the 'head" of C) to the
parse tree node which owns C.

Then SC is sufficient to guarantee that if C is marked va-
1lid then the attribute-values of the variables in X have not

changed.

Proof:

The semantics of a variable X; can change {h one, and only
one of the following three ways:

(a) the values of some subset of the attribute-values of

X; in a name table entry referencing Sc are altered;

(b) a name table entry for X4 is deleted completely (this

corresponds to a change in the scope of the variable);

(¢) a new name table entry for X4 is created in some

block B which previously had no x; entry in the name tzble,
When a code sequence, C, is initially constructed, it is assumed
that it is valid code.

Case (a):

This case is the most straight forward. Any change to the
semantics of the variable will cause all items on the dependen-
cy list for that X; to be marked invalid.

Case (b):

Proceed as in case (a). Since the addresses in any parse

tree node which refers to that variable only points at the name

table entry and not to the semantics entry, correct code will be



4C3-2

The program:
1 PROCEDURE F;
2 LOCAL A < 0;
2A  BEGIN
202 A <« A+ 1;
2B END
3 A<« A+ 1;
4 END
has been entered into the system, and so the name table for the
procedure F has an entry for the identifier A which looks like

the following:

—p | T }—

tl Isemanticsl d—chainJ

The dependency chain (d-chain) links together statements 2,
2A2, and 3.

Now, if the user types

2A1 LGCAL A;

this will cause another entry for A in the list hanging from
its name table entry and will not affect the entry already in
that list. DBut statement 2A2 is then incorrect and its code
must be marked invalid if this change in scope is to take effect.
We now give a constructive proof of a theorem showing how this
'can be handled.
Theorem

C is a sequence of code involving some set X={x1,x2,...,xk}

of variables, and C is dependent on the attribute-values of



4C3-1

4C3 A TFI Which Responds to Dynamic Changes

We have described data structures for the naming of varia-
bles and ways of representing values which allows interleaving of
program execution and semantic changes. It only remains to complete
the specification of the TFI method in order to give it the ability
to respond to semantic changes affecting active pieces of programs.

Before altering the TFI, however, we need to establish the
sufficiency of the dependency chains and the naming structures des-
cribed for detecting all the semantic changes which can affect a

given statement,

4C3A Semantic Changes: Their Detection and Range of Effect

Each entry for a specific variable in a name table has a
sequence of bit fields associated with it which are the attri-
bute-values for that variable. Also a part of each name table
entry for a variable is a reference to the head of a list of all
the variables and code strings which depend on the present sem-
antics of that variable. This chain is really a ring; i.e., the
last element of the chain points back to the name table entry.
Clearly, any change in the semantics of variable can then easily
invalidate all those things which are dependent on it — except
for a change in the scope of a variable, which may not directly
affect that particular name table entry. Consider the following

situation.



4C2-4

The indirect relative jumps are still valid since the B and y pairs
have been correctly altered.

It is not necessarily desirable that all the code from a program be
generated into one single buffer since that would incur a large
amount of overhead when inserting code into the buffer. A better
compromise is to allow any node to possess its own code buffer in-
stead of using its parent's. Then the code
passed back to its parent is not a copy of that code buffer but

a call on the code which that node owns: we shall denote such a
call as a comp-call in what follows. Its counterpart which we have
already used in the IF-statement example is a call on the interpre-
tive routine for a node from a string of compiled code. The THEN-
call in figure 4C2-2 is an example of an interp-call which is used
to cause the THEN CLAUSE node to interpretively execute. That par-
ticular interp-call was in fact created by the IF-node, but attributed
e the THEN CLAUSE simply by setting the value of the code
position pair for the THEN CLAUSE node to indicate that the code
belonged to it.

One last item of note is the generation of backward rel-
ative jumps in order to implement loops, etc. They can be done in
exactly the same way as forward jumps except that it is the FIRST-
field of the code position pair addressed by the backward jump
which must be used, and any increment or decrement from that posi-
tion must also be specified as a field in the instruction. Both this
and normal jumps only work if the beginning address of the executing
code string is available since it is needed in order for the jump

mechanism to work.



4C2-3

subnodes can be accomplished by using the LAST field for that sub-
node. In this way, even if the code from that subnode changes, the
relative jumps will remain valid since the code position pair for
the subnode will have changed. Indeed, this would allow us to re-
place the THEN-call code in the above example by the actual code
generated whenever the THEN_CLAUSE was executed, without touching
any of the other code in the buffer — simply by altering the code
position pair for the THEN_CLAUSE node.

The tree before this transformation might be:

1 3 4 5 6 7
IF: EXP-code test jumpfalse(B,2) THEN-call jump(y.1)
8 10 11
[1:3 :[6:6] v:[8:1C] ELSE-code stmnt-end
E}iP THEN__ci.AUSE ELSE_(‘:}LAUSE

Figure 4C2-2: Relative Jump Example
B and y represent the memory locations of the code position pairs
for the THEN and ELSE clauses, respectively.

When the THEN-call is executed, the result is the establish-
ment of a code buffer assumed to be indexed from 6 rather than 1.
After the THEN CLAUSE node has generated and executed the necessary
code, the THEN-call will be excised from the original code buffer
and replaced either by the actual THEN CLAUSE code or a call on it.
The code position pair for the THEN_CLAUSE might, therefore be
[6:10] after this operation. In that case, the difference between
the new LAST value (10 in this case) and the old LAST value for the
THEN_CLAUSE must be computed (10-6=4) and added to the [FIRST:LAST]
pairs for each sibling node to theright of the THEN-clause. The

new tree would then be

IF: EXP-code test jumpfalse(B,2) THEN-code jump(y,1)

[1:3] B:[6:10] vz [12:14] ELSE-code stmnt-end

EXP THEN_CLAUSE ELSE_CLAUSE

|

Figure 4C2-3: Modified Relative Jump Example



4C2-2

which is not necessary to the program's execution at that time. To
make the code for the IF node logically complete, it places into the
code buffer (without executing it) code to make an interpretive "call"

on the THEN CLAUSE should it be needed in the future.

So the IF node first executes and acquires the code from
each of its EXP and ELSE CLAUSE subnodes as well as its own code
to jump to the ELSE code when EXP is false, and to call the THEN_
CLAUSE node if EXP is true sometime in the future. The generated

code then looks like

-

EXP IF IF IF ELSE
The names under the code descriptions indicate which node actually
generated that code. The THEN-code, it should be noted,represents
a case where the code was created but not executed.

The problem is that if we would like to replace the THEN-

call by code generated by the THEN CLAUSE when it is later executed,
the relative jump to the ELSE-code created by the IF node will be
incorrect. The same situation can also occur for the transfer of
control which is used to bypass the ELSE-code since the ELSE-code
itself may contain incompletely executed statements such as an IF-
statement.

This problem is easily solved using the code position in-
dices described in the last section. For each subnode, a parent
node contains three pieces of information: a reference to the sub-
node, and the [FIRST:LAST] numbers for the subnode. Thus, any rela-

tive jump in the parent's code to bypass the code from one of its



4C2-1

of an [F-statement as shown below:

IF

EXP  THEN CLAUSE ELSE_CLAUSE

Figure 4C2-1: Tree for an IF-statement

Now, only one of the THEN CLAUSE or the ELSE CLAUSE will be executed
the first time that the IF node is interpreted, depending on the value
computed by EXP., Assume that EXP produces the value false the first
time, and only the ELSE CLAUSE is to be executed. We can do one of
two things with the THEN CLAUSE:

(a) 1let the TFI act as a compiler (this is described in section

4C4) and compile —but do not execute — the code for the THEN

CLAUSE; or

(b) place into the code buffer an operation which will call the

THEN_CLAUSE to interpret should it ever be needed, but do not use

the THEN_CLAUSE this tire.
Version (a) if logically extended will cause corplete compilation of
an entire program whether or not it was all executed. But it is un-
desirable for the more important reason that the program may not even
have a THEN CLAUSE at this point in time. Recall that we wished to be
able to execute incomplete programs as an aid in development and de-
bugging of programs. Requiring the user to supply the THEN CLAUSE
when it is not even being used seems a strong concession to the im-

plementation, at his expense.

We prefer method (b) since it allows code from the IF-statement

to be logically complete, while not requiring the user to supply text



4C1-7

must still denote themselves as having created code which is depen-
dent on the semantics of certain variables. However, a node such
as MULT which has no code buffer associated with it and which does
not directly access B or A need not denote itself as being on their
dependency chains, since that information is easily deducible from
its two subnodes. ADD is denoted as dependent on A and B because
it has actual code associated with it; and the VALC nodes are de-
pendent directly on the variables which they access, so they are

placed on the dependency chains.

This manner of noting dependencies requires some extra work on
the part of the routine which traverses a dependency chain when a var-
iable's semantics are changed. Whenever a node is encountered which
has no code buffer of its own but has produced code, all its parent
nodes up to the closest node with a code buffer attached to it must
also be marked invalid. This will keep the TFI's behavior as though

each node had its own code buffer.

4C2 Simple Jumps and GOTO's

As mentioned previously, the jumps which are required in the code
generated by a TFI | such as are needed in an IF-
statement or looping statements, need to be relative jumps. By rela-
tive we mean relative to the beginning of the code string in which the
jump code exists. This is necessary because of the manner in which
code can change in the parse tree, i.e., it must be easily

relocatable.

Nevertheless, even relative jumps are insufficient for the case



