4A3-4

The diagram represents a sequence of nested calls. Normally
USER would have access to F's variables (via inherited scope), but
that may "hide" some variables of interest in the incarnation of Q.
Separating its context from F and reattaching it at Q (as indicated by
the dashed line) overcomes this difficulty. Of course, USER must also
be able to revert back to a previous context or nest them further; our
remarks in chapter 2 on control symmetry apply mutatis mutandis to con-

text control.

Since USER is really just a procedure like any other, this implies
that any program should be able to mask off part of the control/ context
stack for scope purposes, as a separate consideration from the control
information. Interestingly enough, this is exactly the mechanism used
in many Algol systems for evaluating ''by name'" expressions in the con-
text in which they were originally passed as actual parameters. The
only difference is that the control is not available as an accessible
structure in Algol whereas it must be in an IPS in order to provide
these features, and allow the user access to his programming environ-
ment in as complete a manner as possible. Indeed, the ability to
change contexts in this way is little more than an implementation of
the by-name concept without a priori knowledge (in general) that such

accessing will be required.

4A3-3

the former to locate a point in the context hierarchy, and then the
notation F.A to access the A in the incarnation of F which is the

closest to the specified control in a backward direction.

We will use the notation ++.n to denote the control which is n
levels back in the stack counting the current level as level 0. Thus,
++.1.F.A would mean the following: beginning one level of control and
context back, search the stack for an incarnation of the object F,
either as part of the control or as a function named within the scope
of some active context; then use the A for that particular function in
that context (of course, this implies that A may have to be searched

for by the SCOPE algorithm in the same way as F was found).

To thus completely specify a value each time it is to be used or
inspected involves large overhead for the user in terms of the number
of characters to be typed. It would be advantageous to define a de-
fault scope for some period of time during debugging so that one
could simply type F.A instead of ++.1.F.A cach time that particular A
was to be inspected or changed. Such a context level default could be
associated with a particular incarnation of the USER procedure (USER
was introduced in chapter 2), disappearing as the default when that
level of USER did. Pictorially, what we are suggesting is that con-
trol be separable from context so that USER (and any program, in fact)
may attach itself to context levels other than the one normally ob-
taingd in parallel with a subroutine call, thus bypassing part of the

context which may be acting as a wall to hide the one desired: e.g.,
USER-4

AD =" 4= T) =
P

4A3-2

non-predictable: thus, in the above example, the user may not know that
the A in the outer block should be inspected during the life of the
inner block until some error occurs during testing of the program.
Two main possibilities can be considered as candidates for a solution
to this problem:

(1) controel could be placed into the state of the outer block

by "exitmq" from the inner;

(2) a naming convention for the outer A could be established,
allowing access to it without having to leave the inner block.
"Killing" the execution of the inner block as suggested by (1) seems too

drastic just to inspect variables in the outer block. And when the
value to be looked at is more than one level removed, even more execu-
tion must be deleted. However, (1) implies a rather neat method for
accession of items in the call and block hierarchy as represented in
the stack: namely, to establish a pointer into the stack at some con-
trol and context level, then using the SCOPE algorithm from there to
find the A accessible at that level. This really amounts to being
able to control the context as separate from the program control — and

we will shortly do so.

The second suggestion is applicable in a static as well as dyna-
mic sense. One would like to be able to access the variables in a gi-
ven procedure, for instance, and a simple notation such as F.A mean-
ing the A in F is ample for the static situation. However, when Fis
recursive, one needs to be able to talk about a specific incarnation

of F, and then F.A becomes ambiguous.

An alternative is simply to combine the notions (1) and (2), using

4A3-1

which allows a process,Q,say to associate certain of its variables with
their named counterparts in another process P for instance. P is prob-
ably not a simple name since it must at least contain some qualifica-
tion as to the owner of the process, whether the user himself, the
system, or some other user. Examples of such naming conventions have
been implemented in a number of time-sharing systems such as MULTICS

[Sa 66] and TSS/360 [IBM 69].

4A3 Circumventing Scope

One of the prime features of an IPS is the ability to inspect
variables during program execution as an aid to program development
and debugging. In accord with the philosophy of allowing the state-
ments of an IPS language to be used ih both direct and delayed (or
stored) mode, inspecting the value of a variable is usually accomplished

by the normal output statements of the language.

Since, in general, scope rules such as Algol's are intended to
insulate variables and program sections from one another, it is com-
mon that not all variables are accessible at any given point in an
Algol program. This may be so because of scope limitations or be-
cause of naming conflicts. An example of this is seen in the follow-
ing block structure:

A,B
r

When control is within the inmner block, the A of the outer block is

inaccessible. However, in an IPS it is crucial that the user be able

to circumvent such inaccessibility. Errors are generally considered

4A2-2

bypassed by the scope algorithm when encountered during the search of

a name table.

4A2B Global Variables

Variables can be declared to have global scope, in which case,
any use of a variable in a block in which it is declared global will
access only the GNT to find it. Thus, all places in which A, for in-
stance, is declared global will be using the same A. There will be an
entry in the LNT of each procedure in which A is declared global for
the block in which it was declared; but that entry is only used to
relate that declaration to the GNT by means of a pointer to the GNT
entry for A. Since there is then an entry in the LNT for A, the SCOPE
algorithm can be expected to use it if encountered during a scope
search. In order to prevent possible damage to global variables due to inherited
scope, however, (e.g., by a called subroutine's unwittingly

changing it) one can declare A as secret global, meaning that it should

be bypasse in any scope search. Indeed, the attribute secret attach-
ed to a variable is more a protection mechanism than a scope and

should be allowed as an extra attribute in declarations.

It is intended that global variables apply at the process level.
Since a user may have more than one process or may be communicating
vwith processes belonging to other users, a way is also needed to share

"names'" between such independent processes.

4A2C External Scope

Interprocess naming is provided by the scope declaration external (P)

4A2-1

are the same from use to use), then the TFI can produce stable code
which will not be constantly invalidated. Moreover, after the ini-
tial use of a variable, separate functions using it will have a name
table entry for it, created by the above method, thus decreasing the
amount of overhead required to match a use in a function to a partic-
ular incarnation of a variable of that name. The actions necessary
when a declaration is deleted are dealt with in section 4C3A: Seman-

tic Changes: Their Detection and Range of Effect.

4A2 Other Scope Possibilities

4A2A Secret Variables

The mechanism of inherited scope allows a program to freely ac-
cess its caller's variables, so it is necessary to provide a mcans
whereby a calling program can insulate itself from the procedures
which it calls, Otherwise, a 'correct' program can be made to act in-
correctly by procedures which are not lexically local to it but which
it uses, and in particular, system routines written in the language

could be susceptible to this kind of inadvertent damage.

A scope declaration such as secret can accomplish this: a secret
variable obeys normal scope conventions except that it is not known
by any lexically contained blocks or procedures, nor by any called
procedures. To all other blocks, it is as if there were no declara-
tion of secret variables in the block in which they are declared --

only their owning block knows of their existence. They are simply

4A1-12

nowhere in the call hierarchy to be bound to the global value. In

any case, any existing lexical scope is honored before inherited

scope whenever an identifier is undeclared in an executing program.

A large part of the motivation behind the TFI is that an IPS
should attempt to bind semantics as early as possible even though the
user has not declared such bindings. That is, (1) it is anticipated
that statements and variables are changed much less frequently than
they are used in normal execution in an IPS, and (2) there are de fac-
to bindings of variables and programs which ought to be exploited,

even though not explicitly given (See also section ZH Interpretation

and Compilation).

In the case of inherited variables, it is not clear that an oc-
currence of such an identifier will be bound to the same variable from
use to use of its containing block. But it is probable that other at-
tributes of that variable will remain fixed over time (such as its
type or number of dimensions, for instance), and it is that semantic

constancy which should be exploited.

A simple modification to the above SCOPE algorithm which allows
us to do just that for the case of inherited variables is the follow-
ing: when an identifier is bound to a value and it represents a
use of inherited scope, an entry for that variable is added to the
function in which the identifier occurs. Its semantics then can in-
clude its type, etc., on that use of the function or block as well as
the fact that it is an inherited variable. Then, on subsequent exe-
cutions of that program, use of the variable will activate the SCOPE
algorithm because it is marked as "inherited!' However, if the other

attributes of the variable, (from whom and when it is inherited

4A1-11A

Since the outermost incarnation of USER has the GNT as its
local name table, the logic of the above algorithm will allow an

identifier which is declared

4A1-11

Q.1B means that statement 1B was the active line in procedure Q when
P was called. Also, LNT(Q) is a pointer to the local name table for
Q and is part of the state information which must be saved on a call.
The call information saved for P calling F also marks that call as one

to a LOCAL procedure.

We can now describe the algorithm for determining to which value

the identifier D in F is to be bound in the above circumstances.

The SCOPE Algorithm

(1) Scan the current local name table (LNT(F) when the search starts)
for an occurrence of the identifier D; if one is found, go to
step (5). If the table scanned was the GNT and on occurrence
was found, go to step (4).

(2) If no occurrence of the identifier is found at this level, then
use the name table which is the parent of the one just searched
and go to step (1) if the new table is not the GNT; if it is the
GNT, proceed to step (3).

(3) Search back one level in the call stack; if that entry indicates
a local call (as in the case of P calling F in the example), then
repeat step (3). If the next level represents a non-local call
(as in the case of Q calling P, or USER calling Q), then make
the current local name (current in terms of this algorithm) be
the one referenced by that entry. Go to step (1).

(4) Create an entry for D in the GNT and go to step (5), pretending
that D was found.

(5) Bind the identifier to the value given by the '"found'" table entry.

4A1-10

There is an extra depth now to lexical scope since each pro-
cedure or function, being a namable entity must have its own name
table; hence, we are faced with the problem also of maintaining lexi-
cal scope across name tables as well as within them. The algorithm
for maintaining correct lexical and inherited scope is given in the

following section.

4A1D Maintaining Lexical and Inherited Scope

Given a reference to some non-declared variable in a procedure,
we would like to ascertain which incarnation of that variable is to
be accessed. Which one it is will be determined using both the stat-
ic name table hierarchy (for lexical scope - which must take prece-
dence over inherited scope) and the call hierarchy, which can be view-

ed as implemented via a stack mechanism.

An example will best illustrate these points, and we will use
the example from figure 4A1C-1 given previously. Assume that the user
executes the direct statement

Q;
meaning 'call the procedure Q". Then Q calls P, and P calls F in the
example, When F executes statement
1B2 C « D;

we need to determine which variable the identifier D represents.

When line 1B2 is executed, the call hierarchy is as given in the
following stack description:

P.1D LNT(P) 1local
Q.1B LNT(Q)
USER GNT

4A1-9

a declaration for the variable, one may be assumed to exist at the
ever-present outermost (global) context. A more appropriate nomen-
clature is that the scope of such variables is "inherited" from their

callers, and hereafter we will call this inherited scope.

Since variables and program names must be known in some outer-
most context, there must be at least one name table,called the Global
Name Table (GNT), in a given process. Programs or procedures can thus
be named, and each procedure has a name table as part of its descrip-
tion, which name table is structured as outlined previously and called

a Local Name Table (LNT). An example of the naming structures for the

following skeletal SLICE program is given in figure 4A1C-1 with it:

ST N
P —
1 FUNCTION P; ([descriptor for P |
A 1A LOCAL A; [LNT(P) Jao T]
F_ 1B FUNCTION F;
|descriptor for F|]
A 1Bl LOCAL A; |Ii\IT(FJ A]
1B2 C < D;
| IC END
1D F;
2 END
fl- 1 FUNCTION Q; [descriptor for Q |
D 1A LOCAL D; D <« l;If_%T(QJ D]
1B P;
| 2 END

Figure 4A1C-1: Sample of Name Table Hierarchy

4A1-8

compiler system.

4A1B Maintenance of Lexical Scope

Lexical scope is well represented in the proposed name-oriented
symbol tables, which have such scope described by a list appended to
the name table entry for each name. The only relevant consideration
is how and when that naming structure is altered. An easy and obvious
solution is suggested by the nature of the declarations: namely, to
effect those changes which are lexical in nature when a declaration is
entered and parsed by the system. Exactly what those actions are, a-
side from altering the list attached to each name_is detailed in sec-
tion 4C3. Such semantic changes as are caused by altering, inserting
or deleting declarations in a prograﬁ can be termed global semantic
changes since they may potentially affect many parts of a program. By
contrast, local changes are those which can affect at most a single
isolated line in a program: changing one line of text is the prototyp-

jcal situation of this type of alteration.

4A1C Maintaining Dynamic Scope in a TFI

Earlier, a form of scope called 'dynamic" was referred to.
In this scheme, the scope of a variable is determined dynamically on
each use of the program in which it resides (assuming it is not decla-
red in that program, but only used). The incarnation of the variable
used is that which is local to the program calling the one using (but
not declaring) the variable. This is an inductive definition, since
the scope of a variable in the calling program may be similarly deter-

mined, and if no program in the call hierarchy at that time contains

4A1-7

actual execution of the declaration, rather than entry into the block

in which it appeared. Hence, there are potentially three times at

which the declaration of a variable may have effect and which are

suggested by the above. In order of earliest binding time they are:

(1)

(2)

(3)

Activation-time: prior to the first entry into the block con-

taining the declaration: this corresponds to compile or pre-run-
time in a batch system. This time may, however, be anywhere be-
tween the time of entering the declaration statement (e.g., by
typing it at the terminal) to just prior to the first execution
of the block in which the declaration resides. In accord with

a view to flexibility, the late end of this time-span seems the
better of the two.

Block-entry-time: upon entry to the block containing the declar-

ation. This corresponds tsa scheme used by Algol except that all
the semantics is assumed to become effective at that time.

Execution-time: each time a declaration is executed. This is the

scheme used in LCZ; its -benefit to the user is dubious except
when a declaration is forgotten and one wishes to add it to an
already active block before continuing the execution of that

block.

Since (3) has been found to be of value in a limited way, it should be

combined with (1) and (2) by generalizing these latter to ''execute"

any

declaration of a variable entered into a block which is already

active (including the possibility of multiple uses of a block due to

recursion). Then we will call the declaration of type (1) lexical and

those of type (2) dynamic, corresponding to compile and run-time in a

4A1-6

has been found to be a useful discipline in the use of the L6 system.
The mechanism which makes it a viable and desirable method of program
production is called "dynamic scope of variables' in [MPV 68]. Simply
stated it says that any use of a variable in a module containing no
declaration for it uses that incarnation of the variable local to the
program which called it. If no module has declared a variable, then
a global incarnation of it is used. In this way a module which has a
number of different callers may, in fact, deal with different non-
local variables from call to call, just as if a copy of it existed at
each of the calling points and the normal Algol scope rules obtained.
The ability to make copies of such modules and to place them at the
calling points allows more efficiency of execution and a more lexi-
cally organized structure as the form and content of the program

are finalized. Indeed, in many cases there is only one calling point
and the dynamic scope facility is used simply as a device for segmen-
ting the program into functionally separate units during design and

development -- a most useful tool.

4A1A Binding Times of Declarations

In a compiler system such as Algol, the effect of a declaration
such as real A may have an effect at both compile and run-time. At
compile-time it causes information about the identifier A (including
its scope) to be encoded in a symbol table. At run-time it causes the
allocation of a place for A whenever the block in which it is declared
is entered. In the interactive system LC2 these two times were aban-

doned in favor of the

4A1-5

more suited to our needs. This statement will be justified through-

out the remainder of this chapter.

In the next sections, we will investigate one of the prime us-
ages of these naming structures, that of maintaining correct scope of
variable names in the dynamic environment of an IPS. For the purpose
of what follows we will assume that a global variable, CONTEXT, exists
whose value is always the identification number of the program state-

ment being executed, such as 1, 1A, 2B1, etc.

Now, there are a number of levels at which naming can occur.
That just described can be thought of as being at the procedure, pro-
gram, or module level, by which we mean relatively independent programs
with no common lexical structure, communicating primarily by a calling

and parameter passing mechanism such as subroutine or coroutine control.

Such modules may ''share' variables in the following two ways:
the first is the standard Algol concept of lexical scope which is han-
dled within modules and by mechanisms such as declared global variables
known to more than one module. The second method is more representa-
tive of the mode of program creation and debugging found in interac-
tive systems such as ic? and APL. In an IPS it is common to develop
programs as a number of fairly small and simple procedures which, al-
though lexically separate , are expected to communicate large numbers
of variables as if there were a lexical relationship between them,
Often these modules will remain separated throughout the life of small
or exploratory programs; in larger systems of programs, however, they
may ultimately be merged and become part of an overall Jlexi-

cal and logical structure of the program set. This development sequence

4A1-4

The tree, complete with symbol tables, has the following form:

o

r;
|5
D
S N A A (R N
A B A
B C N
fC A -
[2a] 1T | ol | |

3

se| | [lead | 1|
A

D

s

Figure 4A1-3: Scopc-oriented Symbol Tables

The representation of this lexical scope which is oriented toward

unique names rather than scope is given below:

L I -l T el T T -l 1 1]

— = Vel ="
O I I I T S I N A = O A
- L T 1 T
2] L = -

Figure 4Al-4: Name-oriented Symbol Table (Distributed Scope)

The similarity of the two structures at the elemental level is very
striking, especially if we impose a threading of all occurrences of
the same names in the scope-oriented representation. However, of the

two, the latter (namely scope distributed over uniques names) seems

4A1-3

We will illustrate these two different structures, namely

scope-oriented and name-oriented symbol tables by an - example of

a skeletal program containing only declarations. The program is

the following:

1 real A,B,C,D; _g
2 S
1A
2A real A,B,C; B
3 _iC
—B
3A real B,C,D; C
3B D
381 real A,D; |
€ F R] DJ
4
4A real A,C; é

Fgure 4Al-1: keletal program with lexical scope of names
The scope of identifiers is indicated by the bracketing at the right
of the diagram. Now if we use the first method, there will be in-
dividual symbol tables associated with nodes delimiting the various

blocks above. The form of such a tree is

Figure 4 Al-2:
The nodes with *'s attached are those which would have symbol tables

attached to them.

4A1-2

made which are of a global nature. A good example of this is the
altering of the scope of a variable by insertion or deletion of a
declaration in the program. Moreover, the parse tree is arranged for
execution, and not necessarily to represent lexical structure: thus,
the distribution of symbol table according to lexical scope must be
"artificially' mapped onto that structure. Such an organization,
therefore, is economical for execution, but clumsy with respect to

global program alterations.

Another organization, suggested by the above, is name rather than
scope oriented and uses but one table per program. Then, for each
name there exists a list corresponding to the lexical structure of
those program sections having a declaration of that name. This orga-
nization makes non-local information about a given name readily avail-
able, at the expense of a somewhat higher price for information about

all the names in a given block, for instance.

However, when interpretation takes place, control information
must be used to select a specific entry in the list attached to the
symbol table entry for an identifier. There is an easy and obvious
variant of this scheme which facilitates this kind of accessing: simp-
ly thread together the nodes in the symbol lists which correspond to
the variables for a given block and place pointers to those threads
in the parse tree nodes for the blocks, thus gaining some of the ad-

vantages of the scope oriented tables first described.

4A1-1

4A1 Naming Structures for an IPS

There are two major components of an IPS which can be expected
to use the naming structures for variables: the translator, and the
interpreter or execution system. These components access the table
in different ways and with different demand rates, and its organiza-
tion should reflect those differences. Associating an identifier in
a line of program text with a specific symbol table entry (and there-
fore also a specific scope) is of prime concern to the translator.
This depends on the logical position of the line of text in the
program and the lexical structure of the program surrounding it.
The interpreter, on the other hand, requires only local knowliedge
of the names in a block, and the semantic attributes (especially
the location of the value for that variable) for each such var-
iable. And since the program execution in the parse tree environ=
ment of the previous chapter views control as residing at the nodes
of the tree, it is reasonable to associate all the names local to
a block with the node defining that block.

This latter organization suggests a set of symbol tables,
one per block, in the Algol sense. Thus, a given name might appear
in more than one symbol (or name) table, and the variables local to
a block are exactly those represented in that block's name table.
This localization of names requires that the parser be cognizant of
the block structure within which a statement appears if it is to
bind occurrences of an identifier to the correct entry in the cor-
rect table. Most Algol compilers do indeed organize their symbol
table this way. The distribution of names over the lexical program

structure should be expected to cause problems when changes are

4A-2

emphasis on names in programming, Such a set of tables is called

a symbol table and is used in compiler systems to associate infor-

mation about a named entity with that name. Normally this is sem-
antic information, possibly including a run-time address for that
variable. The information kept for the same purpose by an IPS
is similar except that the information is used and changes in a
much more dynamic way, partly because of the interlacing of trans-
lation and execution in these systems. Nevertheless, the
primary means of accessing symbol tables is by name association,
normally involving table searching. And here too, early binding
can save overhead: for, if the symbol table entry for a variable
occupied a fixed memory location, determined at the first ''appearance"
that name, then any subsequent references to that entry
could be made directly without further table lookup for as long as
that name existed anywhere in the system. This is what is done in
the LC2 and APL systems to speed the interpretation of variables.
In the following sections, alternative representations for
IPS symbol tables are discussed. Then the enforcement of certain
regimes of scope of names is outlined as a series of algorithms
using those symbol table structures, Lastly, we will give a means
of circumventing scope rules using the symbol table structures in

the next sections,.

4A-1

that environment both flexibly aﬁd efficiently. Flexibility is
desirable to minimize the user's overhead for a given task, and
efficiency is necessary to minimize the computer's overhead in the
same task. Indeed, the entire previous chapter on interpretation
and compilation was an initial thrust in this area: the maintain-
ing of flexibility without loss of efficiency.

In this chapter, we will give much more detailed methods for
treating data and programs in this way. Also, the constraints
placed on the environments in which those methods are practicable
will be made more realistic and more in line with what is known
about currently available interactive systems and their immediate

extensions.

4A Names in an IPS

Naming data has always been of central concern in program-
ming languages, from the simple naming of Fortran variables to the
more elaborate block structure of Algol and PL/1 and the more re-
cent dynamic scope of names as used in LCZ. And no matter what
naming scheme one chooses for an IPS, one must also provide some
means by which each named entity is accessible, because the user
may intercede at any level of control and desire to inspect or
change variables which are normally not in the program environment
at that point (because of scope restrictions, for instance). Thus,
whatever rules of lexically or dynamically determined scope
of names are chosen as appropriate to an IPS, we are required to
find a means of circumventing them within the IPS.

The importance of the data structure(s) used to represent

the correspondence between names and values is a reflection of the

both of their systems, VERS and AMBIT/G respectively, have some in-

teresting characteristics as a result of that logical separation.

Another implication of the above tenets is that programs in an

interactive environment should be able to respond to changes in

4 Differential Data Structures and an Extended TFI

In the previous chapter, a method was developed which allowed
programs to traverse the spectrum defined by interpretaticn and com-
pilation as extreme points. In such a system, the programs act in a
differential manner to changes in their environment. One major part
of that environment is the data structures available to programs, and
the representations of such data in the computer. Values whose rep-
resentations can vary along a flexibility/efficiency spectrum will be

called differential data structures. In general, they should have some

of the same properties as differential programs (such as those in a
TFI environment). Two of those properties, heretofore unstated, are
the following:

(1) the ability to take advantage of any "effective" bindings, even
if unstated by the user or his programs;

(2) the ability to allow changes in binding (such as the type of a
variable changing) without affecting data or programs not con-
nected with or dependent on the semantically object -- complete
recompilation of a program because of changes to one variable
would be in violation of this principle.

These two tenets are related and have some interesting implications.

For instance, (2) implies that the way a data structure is implemen-

ted is an issue which is separable from its semantic content (i.e., its

"meaning", how it is accessed, or how it may be changed). Earley

[Ea 69] and Christensen [Chr 68] have both had some success in trea-

ting the accessing of data as separable from its representation, and

AEEendix 3B

Boolean procedure INITIALIZE(STATEMENT);
begin
if ~COMPLETE WVALID then DELETE_CODE (STATEMENT) ;
THIS_§TATEMENT + STATEMENT;
ig.THERE_}S_pODE_fOR (STATEMENT)
then begin
COMPLETE <« true;
INITIALIZE <« true; comment : INITIALIZE = true means that

the statement has been executed and
the interpretive routine need do
nothing;
EXECUTE_CODE_FOR (STATEMENT) ;
end
COMPLETE + iglgg;VALID + true;
GET_A BUFFER (STATEMENT);
SET_INCOMPLETE (STATEMENT) ;
INITIALIZE + false;
end;

end;

procedure CODE (start,limit,params);
begin
MOVE_FODE;TO_ﬁUFFER (start,limit,buffer address);
SUBSTITUTE (params,buffer_;ddress); comment : substitute parameters

into the copied code;
MOVE_FODE_IO_?UFFER(return_pode,return_pode_§ize,buffér_ﬁddress+1imit);
TRANSFER_FONTROL(buffer_gddress); comment: execute the prepared code;
buffer_address < buffer address + limit;

end;

procedure COMPLETE_CODE (STATEMENT);
begin

SET_COMPLETE (STATEMENT) ;

COMPLETE + true;

end; comment:

Appendix 3A

The following syntax and scmantics hae been used in describing

the ADD, MULT, and VALC routines on pages 3D-1 and 3D-2:

PERFORM = "PERFORM" (.ID / SUBNODE) :PLRFORM[1];
SUBNODE = '"*'" INTEGER .$("*'" INTEGER) :SUBNODE[1+8];

PERFORM calls an interpretive routine; if the PERFORM ,ID form is used,
it simply calls the routine .ID, treating it as a nodal routine which
has no code. If a SUBNODE is called, then PERFORM also does the INI-
TIALIZE action described in Figure 3Cl1-1; i.e., if the subnode has
valid code, PERFORM simply executes that code, and if not, it deletes
any code which the node may have and gets a new code buffer for it be-

fore actually invoking the x-routine specified by that node.

In order to include these definitions in the SLICE grammar, the

SIMPST rule must be amended to read
SIMPST = ASSIGN / EXP / IFST / COMPOUND / GOST / PERFORM;
We would also like to add syntax for line numbering:

LINENUM = $(INTEGER 0$1(APLIACHAR));
ALPHACHAR = "A" / "Bl / / vzn.

In order to place LINENUMs into the grammar, however, it would be neces-
sary to optionally allow it before each non-terminal which can be a
statement segment. If we altered the grammar so that a "*" precedes

all rules which may be a segment, we could then simply let the parser

mechanism worry about LINENUMs preceding segments of statements.

3D-10

when it attempts to return, control will return to the point left by
the first use of the VALC(aB) node. VALC will then attempt to create
and execute the ”ctzge(real)” code as above. Finally, it can be re-
vealed why the complete-flag is needed: using the fact that VALC(oB)
already has valid and complete code, CODE can decide to execute the
"ctype(real)" but will then throw it away. The same happens at the

MULT and ADD nodes, thereby achieving the correct execution without

erroneously attempting to concatenate extra code to already complete

code sequences,

