1B-2

both busy by allowing a number of users to share the resources of the

system at one time.

Early conversational systems were an attempt to put some of
the aesthetics of program development back into computing, and many
had as customers novice programmers who, it was suspected, would be
easily "turned off" by the plethora and complexity of control cards
necessary to run a job on some systems. Some of these systems, nota-
bly JOSS [Ba 66] and BASIC [KK 66] involved languages which were rel-
atively simple to learn although limited in the scope of their appli-
cations. The amazing observation about these systems is the amount
of constraint of expression which was tolerated because of the other
appealing aspects of the systems, in particular, the level of inter-

action which they provided as compared with their contemporary systems.

Interaction can be of value in three primary aspects of com-
puting: program design and development, debugging, and program exe-
cution. A programmer can compose programs at his console, simply
treating the terminal as a scratch pad for writing down parts of pro-
grams as they are developed. He can also alter and change the program
as errors are detected. And, finally, he is able also to use the
program interactively by having it request input from him and then

displaying the results to him.

When compared to the first interactive systems, bare computers,
current conversational programming has improved in a number of ways.
First, higher level languages, which are easier and more natural for
the user, and more directly applicable to his problems, have taken
the place of primitive machine language. Structure, in terms of var-
iables and programs, has replaced simple binary words in memory as
the fundamental units of information. In place of switches, buttons,
and lights on the computer, the user now has a typewriter device on
which both he and the computer can type, in characters and numbers in-
stead of just binary zeroes and ones. Such devices also have buttons
which can be used to "interrupt' the computer and so allow the user to
gain control of the conversation. A growing number of systems designed
for interactive use take advantage of cathode ray tube displays

and so-called "tablets" on which one may write with a stylus.

1B-1

1B The Evolution of Interactive Programming

In the early days of computers, programs were typically writ-
ten in machine language, loaded into the computer's memory, and run
by the programmer himself, who then had full use and control of the
machine. During such a period he might simply run a problem, take the
answers which were printed, and depart. Of course, any reasonably
complex program has errors in it initially. In such cases, the pro-
grammer could usually set switches or actually alter his program in
memory to cause it to stop at some selected points during its execu-
tion. When it paused, the user could display memory locations to
inspect directly intermediate results, values of variables, and so on.
He was in some sense conversing with the computer. The catch was
this: he was constrained to interact with the computer only in lang-
uage directly understandable by it, binary words and manually set switches.
The context intelligible to the computer was limited to the words and
bits in an unstructured memory of limited size, and the user had to
translate all requests and commands into this context. The transmis-
sion media, namely switches, buttons, and lights, were clumsy and slow
to use. Nevertheless, the rate of interaction was reasonable, aside
from the translation problem for the human being, and it was possible
for the user to maintain his context (the program being tested) well

enough to make progress.

Simon [Si 66] has pointed out that this became more and more
wasteful of the computer's time as machines became bigger and faster,
and partly, at least, prompted the first batch processing systenms.
During the era of batch systems (1954 to the present), developments
were made in programming languages, loaders, program libraries, and
so on, which increased the utility of the computer. Stacked batch
systems allowed the computer to be used more efficiently, but, as
Simon states [Si 66]:

""The subsequent era of batch processing was distressful to
programmers, because it did not eliminate the man-computer
imbalance, but simply reversed its direction. Now the pro-
grammer had to wait for the response of the computer, and
unless he could switch to another task while waiting, much of
his time was idle."

The advent of time-sharing systems kept the programmer and computer

1A-3

and less efficient than those accessed by compiled code in a more
rigid environment. Indeed, for the important case of the interpreter/
compiler spectrum, we will develop a method of the option (c) variety.
Interactive systems have so far been used, almost without excep-
tion, for relatively small tasks. One of our goals will be to design
a systems methodology for constructing interactive systems of use
for large tasks such as building operating systems, or in fact build-
ing an IPS.

1A3 Construction

The last part of the thesis deals with the construction of an IPS
by bootstrapping it from a small set of primitives. The primitives are
those generated by the preceding parts of the research and are few
enough and logically simple enough to allow one to move a system built

upon them from machine to machine by moving the base only.

1A-2

These three options also reflect varying degrees of automation
of the design process. Option (a) implies that the designer, using
some unstated method, chose a single point of compromise (such as
either a form of interpretation or compilation in the execution spec-
trum). Option (b) requires a strategy within the system for choosing
the correct point for a given situation, and therefore has automated
the choice function, given a set of discrete points; a good example
of this would be the decision whether to represent a program in in-
terpreted state or compiled state in 3 system with both an interpreter
and a compiler. And, finally, (c) represents completely automated
design, for it is able to pick any point out of the spectrum which
corresponds to a given situation and use it. The scheme for a com-
bined interpreter and compiler to be described in the thesis is of
this latter form. Of course, the design of a scheme of the option
(c) type is the designer's problem: we have really only removed the
problem one level. Nevertheless, (b) and (c) can still provide a
system which is responsive to changes in its operating environment,
hopefully in an optimizing fashion.

This representation of the design problem can be called a spec-
tral philosophy: whenever there is more than one instance of a struc-
ture or feature in an IPS, those instances will be considered as
bands in a spectrum, and we will investigate and hopefully define its
limits and possibly other lines of interest in that spectrum. For
instance, the representations of data structures to be used in a

highly interactive and changeable environment will be more general

1A-1

into three categories: aesthetics, architecture, and construction.

1A1 Aesthetics

In order to know what features can make an IPS which really
aids people's work and which they will want to use, we need to estab-
lish some evaluative and synthetic criteria for designing an inter-
active system and judging new features, however introduced. The
latter part of this chapter will deal with this extremely important

area of interactive systems.

1A2 Architecture

In designing an interactive system, we are faced with two
apparently opposing constraints: flexibility for the user, and effici-
ency for the computer. They can be viewed as lines in a spectrum over
program execution, extending from flexibility-inefficiency at one end
to inflexibility-efficiency at the other. The options open to a de-
signer in this perspective are the following (listed in order from
least to most desirable):

(a) considering the design constraints, pick a single ''point"

in a spectrum and design an implementation for it;

(b) pick a number of distinct points in a spectrum and make

the system able to select a single point depending on the

state of the system when it is running; or

(c) find a method by which the system can move in a contin-

uous manner along that spectrum, in response to changes in

the state of the system.

For each spectrum (or dimension) which is of interest in a specific
system design, one of these options will be chosen. The degree to
which the system responds to changes in that spectrum will depend on
the option used. If option (a) is used, the system will be able to
handle only situations whose characteristics in that spectrum match
the point chosen. When (b) can be used, the system will be able to
treat a number of discrete characteristics well, but must still map
each situation onto one of the chosen points. Option (c) will allow
the system to respond to any situation along that spectrum by picking

a point according to the characteristics of a given situation.

1-2

structures and program dynamics are, by themselves, distinctly non-
trivial. By factoring these concerns out of the overall problem, we
hope to gain insight into them, both individually, and jointly, as
they affect one anpther. By treating them individually, we hope to
gain an appreciation, with respect to name spaces, for instance, for
the time and lexical scopes of names in programs, and suitable (im-
plementable) models for them. By also dealing with these issues
jointly, we will be able to view better the interfaces between them:
e.g., how the representation of control mechanisms and name spaces
influence the discussion of data structures since they are important
instances of those structures.

The integration of these considerations and the interpreter/com-
piler methodology will yield a set of primitive operations and control
which can act as the base of an IPS. The remainder, and a large part
of the bulk of such a system is then interactively bootstrappable and
modifiable. Moreover, by showing that those primitives are few and
simple we hope that this base will be, if not highly mobile, at least
moderately mobile from machine to machine. Motivation for this ap-
proach comes largely from the author's experience with systems in
general, and a highly interactive system, LC2 [MPV 68], in particular,
as well as external influences such as the first and second NATO Con-
ferences on Software [NB 69], various other research (such as [Ea 69],

[EER 68], and [Il1 68]), and much discussion with both peers and patrons.

1A Specific Goals

The aim of this research is to find ways to improve interactive

programming systems. For our purposes, this can be subdivided

1-1A

at almost no extra cost: the usually separate notions of interpreta-
tion and compilation are presented as a unified view of program

execution.

Flexibility and efficiency are almost continuously singled out
as motivation and constraints on much of the work in this thesis. For

that reason we wish to make definitions for these two terms which are

more specific than their normal English semantics. Flexibility is
the ease with which the user of an interactive programming system (IPS)
can manipulate the objects of interest to him; this universe of dis-
course includes programs, variables, data and control, in their var-
ious representations. Thus, a system in which lines of program text
can be altered by the user would be deemed more flexible than one in
which they cannot. Efficiency can be viewed as the ease and grace
with which the system can perform a given task; alternatively, the
amount of overhead (due to maintaining user flexibility) in an IPS

is an inverse measure of that system's efficiency. Note that flexi-
bility and efficiency actually reflect a symmetric situation: effici-
ent '"use" of the human is achieved by flexibility in the system and
the system can be more efficient if the user is more flexible and

can work in units which are easy for the machine to do. What renders
the human-machine relation asymmetrical is that this author considers
the human as the important element and the machine as a tool to ac-

commodate him and his work.

A number of sub-problems which arise in this treatment con-

cerning incremental parsing, name spaces, control mechanisms, data

1. Introduction

The presence of a human as an active control element in a com-
puter system provides a great source of variability - one able to tax
the talents of the designers of an interactive programming system
(IPS). This research is an attempt at understanding the form and
source of that variability, and using it as a guide and motivation
for the study of the design and construction of conversational sys-
tems.

We will treat this study first by giving a survey of some exist-
ing interactive systems, and a development of the features of such
systems which make them conversational. Some of these features are
natural extensions of similar notions in non-interactive programming
systems; others have arisen in research by the author and others
[MPV 68, EER 68, Si 66] into interaction; and still others are the
results of considerations of the psychology of humans in an interac-
tive computer environment.

The remainder and bulk of the thesis deals with some synthetic
tools for the building of interactive systems, although some of the
techniques have direct applicability to other types oflsystems and to
programming languages. Of central concern is the development of a

= 1.

Sl ey Ty e e LT L0, CIRT Ay |
Scneme wiicn Ccombines tTihie ad

vantages of an interpreter (for flexibi-
lity) and a compiler (for efficiency) within one system in such a way
that part of the user's programs may be partially interpreted or com-
piled depending on their use and constancy over some period of time.

This interpreter/compiler scheme is done in such a way that only an

interpreter is written. The compiler comes along at a large 'discount)'

Chapter 4, Differential Data Structures and an Extended TFI

4A

4B

4C The Tree-Factored Interpreter Generalized

Names in an IPS

Attributes of Variables

4-1

4A-1

4B-1

4C-1

Chapter 5, Bootstrapping an IPS (With an Eye to Exportability) 5-1

SA

SB

5C

5D

SE

History of Bootstrapping

History of Exportability
Bootstrapping an IPS using the CBM
A Model of an IPS

Design Considerations for a CBM

Chapter 6, Conclusions, Future Research and Summary

6A
6B
6C
6D

6E

Appendix A: A

Bibliography

Flexibility in Programming Systems
The "Spectrum' Philosophy
Short Term Research Areas
Long Range Research Goals

Summary

Conversational Base Machine

5A-1

5B-1

5C-1

5D-1

SE-1

6-1

6-1

6B-1

6C-1

6D-1

6E-1

iv

Table of Contents

Chapter 1, Introduction 1-1
1A Specific Goals 1-2
1B The Evolution of Interactive Programming 1B-1
1C Considerations and Criteria for an IPS 1c-1
1D The Interactive Criteria Applied to LC2 1p-1

Chapter 2, Design Considerations for an IPS 2-1
2A Direct and Stored Statements 2-1
2B Accessing Other Data Structures 2-1
2C The Concept of the User as a Function 2-2
2D Coroutine Control for Interaction 2-3
2E Bootstrapping 2-5
2F Other Features 2-6
2G Monitoring 2-8
2H Interpretation and Compilation 2-9

Chapter 3, Interpretation and Compilation in an IPS 3-1

3A Simple Model of Interpretation as a Pseudo-Machine

3-1
3B Using a Parse Tree to Drive an Interpreter 3B-1
3C Factored Interpretation 3C-1

3D Extending an FI to Parse Tree Interpretation 3D-1
Appendix 3A

Appendix 3B

em—— - —

iid

Acknowledgements

These pages contain few truly original ideas: most are the
result of seeds planted by those older and wiser than myself as well
as others younger and as keen. It is a pleasure to acknowledge those

debts.

Professor Alan J. Perlis has been a source of constant sur-
prise, insight, and enthusiasm. Most of the "important' ideas in this
work were initially put forth by him and at first classified by me as
impossible! Collaborating with Dr. Perlis on the Lc? project I count

as my most valuable education in these past four years.

There is a great debt due also to Professor Bill Wulf for
his continual support, ideas and invaluable criticisms. His role as
cheering section bears much of the responsibility for this work's

completion.

Projects, like books, seem to possess lives of their own;
the LC2 project, which prompted most of this research, was like that.
But it owes its lifeblood to the minds and energies of Hal Van Zoeren,
Dave Wile, Joe Newcomer and Ed McCreight. It has been an honor to

work and argue with them,

To my wife, Barbara, I owe much for her help, patience and

encouragement. She has my thanks, but I think she knows that.

ii

Abstract

This dissertation treats interactive programming systems

at three levels:

(1) the design of an interactive programming system (IPS)
from considerations of the psychological and intellectual
needs of the user;

(2) the implementation of an IPS which is both flexible for
the human and efficient of computer usage; and

(3) the construction of an IPS by bootstrapping.

The bulk of the work centers on the second point. In particular, a
method is developed for building an interpreter for a language (to
achieve flexibility) which also yields a compiler for that language
as a (relatively cheap) byproduct. Programs 'become' compiled in the
process of being interpreted, but are able to respond to changes in

the interactive environment as if they were being interpreted only.

With such an interpreter/compiler, bootstrapping becomes a
viable means of building an IPS. This is especially valuable in
making the interfaces between the human and the system easily malleable

to suit the user's needs and abilities.

The Design and Construction of Flexible and

Efficient Interactive Programming Systems

by

James G. Mitchell

Department of Computer Science
Carnegie~Mellon University
June, 1970

Submitted to Carnegie-Mellon University
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense
(F=44620-70-C-0107) and is monitored by the Air Force
Office of Scientific Research. This document has been

approved for public release and sale; its distribution
is unlimited.

