4uli=0

Using this approach, the A+B*A example could have the
following tree and code after once being executed in this manner:
[162] [3:8]
VALC(adA) : {A} MULT
[3:5] [6:7]
VALC(aB) : {B} VALC(aA) :{A}

Figure 4C1-2 :A+B*A Trce with Single Buffer
The [FIRST:LAST] pairs are given as attached to the arcs leading to
subnodes.

Which sections of code are generated by a non-termi-
nal node can be deduced from the position pair on the arc leading
to it and those leading to its subnodes, even if that node generates
more than one piece of code (scattered between the code from its
subnodes, for instance). Thus, we can easily write down the scopes

of parts of the code at the ADD node from the position pairs:
1:2 355 6:7 8:8 9:9

A i} A mult add
1 J l— ]
VALC(aA) MULT
1 Ji J
VALC@B)VALC®mA)

The code generated by MULT is [8:8] and [9:9] is that generated by
the ADD node. This relatively innocent-looking addition to the TFI
scheme will also prove of considerable value in aiding jumps within
and around generated code, in recovery from semantic changes affec-
ting active statements, and in allowing a TFI to be operated as a
"normal' compiler.

The last item which needs to be mentioned is that nodes



4C1-5

We have now generated two apparently opposing constraints:
(1) 1in order to avoid complete reinterpretation after a
semantic change, each node needs a copy of its own code
which it can use; and
(2) in order to conserve memory space, only certain nodes
should have code attached to them (at the statement level,
for instance).
A means of satisfying both constraints is to place minimal information
at a non-terminal node concerning the code generated by each of its
subnodes. This information is simply
(a) the starting position of the code from the beginning
of the code buffer (counting from one) for that subnode,
and
(b) the index of the last word of code generated by that
subnode,
Both these numbers include all the code which appears to have been
generated by a subnode, whether generated directly by that subnode
or by that subnode's subnodes.
This code position pair we will designate as [FIRST:LAST]
and is generated in the following way:
(1) whenever a node activates one of its subnodes, the
next available code buffer position becomes the FIRST val-
ue associated with that subnode; and
(2) whenever a subnode returns control to its parent, the
LAST value is set to the value of the code buffer index

minus one.



=



4C1-3

k
FE +2x L (n+i) + k

1
]

and, in general,

n+k i=1
= Fn+2nk+k(k+1)+k
& Fn+k2+k(2n+2) (L5)
Now, F0=1; and substituting n=0 in (L5) gives
F = kKPe2kel = (keD)? (L6)
Hence, for the lower-bound case, Fk/fk & %-; i.e., only (2/k) of the

space would be occupied by the code which is used most often.

For the upper-bound case, the recurrence relation defining £

15 fn+l = 2fn+1 (Ul)
ki Kok g
and, in general, fhek = 2 £ +’§O 2
w 258 a0 (2)
n
Now, f0=1, so substituting n=0 in (U2) yields
k .k k+1
fk = 27+27-1 = 2 -1 (U3)

The relation which defines the total amount of code in a full tree of

depth n+l is Fpep = 2Fp+fp, = 2F+2%%2.1  (U4)
: k n+k+1 k-1 4
and, in general, Fhex = 2 Fp+kx2 - iEO 2
k k+1+ k
= 2°F +kx2 -2+l (US)
And, since F =1, we get F = 2M+kx2X*12%1 = k¥l (ue)

Thus, in the upper-bound case, Fk/fk = k, meaning that only 1/k of the

storage used for code is filled by the code at the topmost node.

In both these cases, then, the ratio of total code to most used
code is of the order of the depth of the parse tree. It is clearly

to our advantage to attempt to eliminate this wastage.



4C1-2

Upper-Bound Case: The parse tree is a full, balanced binary tree:

i.e., every node but those at the leaves has two subnodes,, and the
tree has the same depth to the right and left:

15=2*7+1

7=2%3+1

3=2*1+1

Wwhat we would like to find are expressions for each case for
(a) the amount of code at the top node in a tree of
depth k, called fk; and
(b) the total amount of code in a tree of depth Kk, obtained

by adding together the code lengths at every node; we

will call this Fk'

Then, the ratio Fk/fk is an indication of what proportion of the space is
"wasted" due to the presence of the copies of the code.

For the lower-bound case, fncan be defined as

fn+l = fn+l+l = fn+2 (L1)
and, in general, fn+k = fn+2k. (L2)

Now, fy=1, and letting n=0 in (L2) gives

fk = 1+2k (k20) (L3)

for the lower-bound case.

Similarly, we can easily write the following recurrence relation

for E, .45 ol = R F +2(n+1)+1 (L4)



4C1-1

ADD: ({A,B}, A B A mult add )

VALC (aA) : MULT: ({B,A}, B A mult )
({A},A) -
VALC(aB): VALC(aA):
({B},B) ({A},A)

Now, if we count each underlined unit in the code portions of this
tree, we find there are 11 ''pieces of code", and 7

entries (such as {A}, {B}) representing threads in the dependency
chains associated with those variables. Since it-is hoped that the
code at the ADD node is all that will be needed for some period of
time, approximately twice as much code is kept
the tree as will normally be needed.

We can obtain lower and upper bounds on the potential was-
tage by considering the following two extreme cases of a parse tree
(assumed to be binary). In each case we are making the assumption
that each node adds one word of its own code to that which it ac-
quires from its two subnodes.

Lower-Bound Case: The parse tree has the form

or its left-recursive counterpart, which is really an approximation

to a linear list.



4C-1

4C The TFI Generalized

The TFI algorithm as described in chapter 3 has some limitations
and a few associated difficulties. The primary restriction is its
inability to allow semantic changes to a variable when part of a program
which  depends on that variable is active and has compiled code for
accessing the variable. One of the main problems revolves around the
issue of jumps or branches in the code generated by the TFI, especial-

ly for statements like IF...THEN...ELSE.

In this section we will develop solutions for these difficulties.
Also to be presented is a formal discussion of the adequacy of the
TFI method for handling semantic changes to variables. Finally, we
will develop a means by which the TFI can also act as a ''mormal' com-
piler, and discuss some space trade-offs of using the dynamic TFI

over compiling programs in the IPS.

4C1 Code Creation by the TFI

The TFI as described thus far has been almost flagrantly exces-
sive in its use of storage (this was done for purposes of ease of ex-
planation). The fact that an entire parse tree is kept in memory is
part of this misuse. However, a much larger portion of storage is
consumed by each node's keeping a copy of its generated code, as well

as its parent nodes also acquiring copies of that code.

In the previous chapter we applied the TFI discipline to the
execution of the expression A + B * A, finally arriving at the

following tree:



4B4-10

Ultimately it is clear that good compiled code for using a reference
variable can only be obtained if the user is able to declare either
or both of: (1) the depth of the reference chain, and (2) the type of
the ultimate referent (as is done in Algol 68 [VW 69] for instance).
In order to allow this we extend the syntax for declaring a ref-

erence variable in the following manner:
REFERENCE = "REFERENCE" 0$1( '"4'" INTEGER) 081 ("TO" ATTRLIST mamy,

Some examples are
1 DECLARE REFERENCE A;
2 DECLARE REFERENCE TO REAL B;
3 DECLARE REFERENCE 2 C;
4 DECLARE REFERENCE 3 TO ARRAY[10] D;
5 DECLARE REFERENCE 1 TO REAL ARRAY{IO]:ARRAY[IO] MATRIX;
meaning:
(1) A is a reference variable without depth or the type of what
it points to being specified;
(2) B is a reference of unknown depth which must refer to some-
thing of type REAL;
(3) C is a two-level reference to something of unspecified type;
(4) D is a three-level reference to a 10 element vector of
unspecified type; and
_(5] MATRIX is itself a vector of 10 elements, each of which is
a direct reference to a REAL ARRAY[10] — this could be con-

sidered an implementation of two dimensional arrays.



4B4-9

that label (e.g., in a GOTO statement). Labels are identifiers at-
tached to lines in programs; they therefore act as Teference variables
pointing to program statements. Since it is an identifier, there is
an entry in the containing program's symbol table for each label in
that program. Any code dependent on a label (such as a GOTO) is on
the dependency chain for the label; hence, deleting a labelled state-
ment can be viewed as a semantic change to its labels. Code de-
pendent on the labels can be invalidated using the standard method and
traversing the labels' dependency chains. Finally, each line of pro-
gram text (or, equivalently, each node in the parse tree corresponding
to a line of text) must have a list of pointers to the symbol table
entries for the labels in that line in order to drive the above scheme

for handling changes to labelled statements.

Reference variables cause some complications for the rou-
tines such as VALC which must access them. VALC could assume that
the depth of the reference chain or the type of the
ultimate referent are fixed. The more it assumes, of course, the
more likely it is that those assumptions will prove incorrect, cau-
sing reinterpretation. This last statement recalls what was déscri-
bed for the case of variables with inherited scope, and, indeed,
the situations are very similar. Inherited variables are implemen-
ted just as are reference variables, except that they are bound by
the écope algorithm instead of by statements in the user's program,
a distinction which can become arbitrarily fuzzy in a bootstrappa-
ble IPS. All the comments about what to consider as fixed in the
case of inherited variables thus apply equally well for reference

variables.



4B4-8

or one entries in the variable's personal stack; any new allocation
of the variable causes the system to delete the previous one. If
the previous value is to be retained, then one need only set one

of the fields in the newly created item to reference the old before
assigning the new value to the variable.

One thing that is apparent from all the above accessing
methods is that any variable whose scope is known may be implemented
using the LC2 method with the naming structures previously described.:
It is therefore an implementation which ought always to be present.
The presence or absence of othér representations taking advantage
of declarative knowledge about some variables' attribute-values is
only necessary where efficiency and bootstrapping (to be mentioned

later) are concerned.

4B4G Reference Variables

Sequences of machine code are not the only class of items
which may depend on the semantics of a variable. Any variable which
refers to, or names another must also be considered as dependent
on the variable to which it points., Thus, any change in the critic-
al attributes of the variable referenced must not only cause reinter-
pretation of any statements using that variable, but may cause re-
interpretation of statements using variables which refer to it. Refe-
rence variables must therefore (like inherited scope variables) be on

the dependency chain of the variable to which they refer.

A special case of the situation just described is the de-

letion of a labelled statement in a program which is referred to by



4B4-7

A simpler method is to implement the variable using the LC2 method,
outside of the stack, until the routine in which it is active is
finished. We also set an attribute-value field specifying how it
is implemented. This implementation attribute is essentially an
internal system attribute (although there is no reason why a user
could not specify the implementation to be . used in a declaration)
set at the time a declaration takes effect and decides on the rep-
resentation for that variable. At the next block entry the decla-
ration will take effect since we are assuming the variable has
lifetime AUTOMATIC and scope LOCAL. Then we can decide to change
the implementation to the more efficient stack method, using the
standard TFI mechanism for invalidating any code which depends on

the value of the previous attributes, including its implementation.

4B4E Fortran !cthod

Any variables whose scope and lifetime are declared, the
lifetime being STATIC, may be implemented and accessed in the man-
ner most common on computers, namely as a group of contiguous words
whose absolute address is known. The only difference between such

a variable and one implemented in the LC2

manner is that the program
may feel free to use the address of the value as given in a name

table entry rather than always accessing it via that entry.

4BAF Other Considerations

Allocated variables may also be implemented using the LC2

method of a stack per variable, but there will always be either zero



attributes (those being depended upon by some code) is not restric-
ted to the case of inherited-scope variables, but rather applies to
all code for all variables. llence, if a change in attribute-values,
however done, does not alter the values of any critical attributes,

no code will be invalidated.

4B4D Algol Stack Method

The value entries for all variables in some program whose
scope and type are declared and whose lifetime-value
is AUTOMATIC can be implemented by using a contiguous block of stor-
age (sometimes called a '"frame') which is allocated on a stack used
for this purpose; the same stack can-be used for recording control
information as well as the values of partially evaluated expressions.
Indeed, the most common method incorporates the control information
into the frame used for local storage, thus allowing one 'push" and
""pop'" operation to push or pop both the control information and the
values of any local variables in this class.

Since such a frame, being imbedded in the stack, is normally
Lived in size, a declarative change to a variable so implemented
can present problems. Of course, the old value in the stack can
simply be discarded since it will be reclaimed when the program ex-
its. However, we are left with the case of a variable's being de-
clared while its containing program is active. It is unlikely that
we will be able to implement it in the stack at that time since the
frame size is fixed, although occasionally we may be able to use

the stack cell which was discarded because of the changed declaration.



4B4-5

Any code generated for accessing an inherited variable,V,
will assume some things (such as type and structure) as fixed., If
separate calls to the routine using V as inherited do not present V
with attribute-values different from those used in the code accessing
V, which was created on a different call, then that code will re-
main valid. Now, in order to allow such code to be as efficient as
possible, we could attempt to use all the available semantic infor-
mation about V, including the scope of its different parent varia-
bles. But this could easily mean that every call on the function
would invalidate the code depending on V. On the other hand, if
only some strict subset of the semantics is assumed by the code,
then so long as that subset was constant from call to call, the
code would remain valid. To do this it is necessary that each
symbol table entry contain an extra set of bits which correspond to
the different semantics fields, say one for each. Whenever a piece
of code is created which depends on the i'th attribute value, the
interpreter routine is required to set the i'th bit in that extra
set in the symbol table to mark that there is some code depending
on the value of the i'th attribute. Then, on each call, when in-
herited variables are being attached to the correct parent, only
those attributes marked by the code would need to be the same as
the corresponding attribute values of the parent. If the generated
code expects little in the way of semantic constancy then this meth-
od should give it a longer lifetime; the converse is also true.

What is more, this method of selectively marking "critical"



4B4-4

represents. Any declarative change to the prototype must affect all
its son variables since they are semantically the same entity. The
simplest way to ensure that the sons "know'" of any semantic changes to
the prototype is to include them on the prototype's dependency chain
as if they were code which was dependent on it. Whenever the proto-
type changes, its dependency chain will be traversed to mark all code
on it as invalid. If a son variable is encountered on the chain, its
dependency chain is also traversed in the same manner in order to in-

validate code which may "indirectly' depend on the prototype.



4B4-3

4B4B The LC2 Method

In this implementation, each entry in a name table points
to the top of a non-contiguous stack of values for the variable
whose name is in that entry. These stacks are attached to the indi-
vidual entries which are listed from each name entry — thus there
is one stack per unique scope of the variable. Each time a declar-
ation for such a variable is executed, for example on block entry,
a new value entry for the variable is pushed onto its stack. Ac-
cessing then only requires knowledge of the scope of the variable
in order to insure that a particular entry in the list from a name
table entry may be used to access the variable's stack.

Hence, this method, while independent of the type
and structure of the variable in question, is constrained by the
scope of that variable being fixed. Thus, any change in the scope
of a variable renders code generated for it under this method in-

valid.

4B4AC  Variables With Inherited Scope

An inherited variable is assigned a name table.entry, which
is marked as inherited, even though no declaration for it appears
at that level. Accessing such a variable then becomes a matter of
accessing the name table entry, using it as a reference to the value

entry to which it points, as in the LC2

method, and then using the
value as a pointer to the actual value cell for the variable to which
the one of inherited scope is attached. Let us call a variable which

has inherited scope a son of the (prototype) variable which it



4B4-2

and the harder it is to recover from declarative changes to the var-
iable.

The accessing of which we speak is that which takes
place when a low-level semantic routine such as VALC(variable) ap-
pearing in the parse tree is to be executed. Such a node will be a
terminal node with a parameter specifying the variable. At that
time, the VALC routine would have to decide, on the basis of the
way in which that variable is stored in memory, as well as other
attributes, which accessing function is to be used in the code
which it generates and executes. Its partner is the routine used
at the time a declaration takes effect which decides how a variable

is to be implemented.

4B4A Full Interpretation

When a VALC node is encountered during execution of the
program, the exact variable to which it corresponds must be deter-
mined using the SCOPE algorithm described earlier; once it has been
found in the naming structures, then other information available
for the variable can be used to construct accessing code for it.
Thus, this type of accessing is normally only done the first time
that a VALC node is encountered which has no valid code associated
with it. The method always works since the only semantic information
for a variable which never changes for that variable is its symbol

table address.



