Security Classification

14,

KEY WORDS

Liw

LINK B

LINK C©

ROLE

ROLE wWT

ROLE wWT

Security Clasaification

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security clasailication of title, body of absiract and indexing annotation must be enterad when the overall report la classifled)

1. ORIGINATING ACTIVITY (Corporate suthor) 28. AEPORT BECURITY CLASSIFICATION
Carnegie-Mellon University UNCLASSIFIED
Department of Computer Science e

Pittsburgh, Pennsylvania 15213

3. REPORT TITLE

The Design and Construction of Flexible and Efficient Interactive Programming
Systems

4. CESCRIPTIVE NOTES (Type of report and inclusive dates)
Scientific Interim

8. AUTHORI(S) (Firat name, middie Initial, last name)

James G. Mitchell

8. REPORT DATE 7a, TOTAL NO. OF PAGES 7b. NO. OF REFS
June, 1970 275 54
8a. CONTRACT OR GNAIN'I' NO. 8. CRIGINATOR'S REPORT NUMBE R(S)

F 44620-70-Cc-0107

b, PROJECT NO.

. A0827-5

°b. OTHER REPORT NOI(S) (Any other numbers that may be assigned
this report)

61101D

d,

10. DISTRIBUTION STATEMENT
This document has been approved for public release and sale;
its distribution is unlimited.

1. SUPPLEMENTARY NOTES 12. SPOMNSORING MILITARY ACTIVITY
Air Force Office of Scientific Research
TECH, OTHER ' 1400 Wilson Blvd. (SRMA)
Arlington, Va., 22209

13. ABSTRACT

This dissertation treats interactive programming systems at three levels:
(1) the design of an interactive programming system (IPS) from con-
siderations of the psychological and intellectual needs of the user;
(2) the implementation of an IPS which is both flexible for the human
and efficient with computer usage; and
(3) the construction of an IPS by bootstrapping.
The bulk of the work centers on the second point. TIn particular, a method is
developed for building an interpreter for a language (to achieve flexibility)
which also yields a compiler for that language as a (relatively cheap) byproduct.
Programs '"become" compiled in the process of being interpreted, but are able to
respond to changes in the interactive environment as if they were being interpreted
only.
With such an interpreter/cpmpilerj bootstrapping becomes a visible means of
building an IPS. This is especially valuable in making the interfaces between
the human and the system easily malleable to suit the user's needs and abilities.

st s v .

DD /\V.1473

~ Becurlty Classification

[Sk 68]

[St 67]

[st 69]
[SC 69]
(VW 69]
[VZz 69]
[Wai 69]

[WM 69]

[Wu 70]

Sklansky, J., Finkelstein, M. and Russell, E. C. A Formal-
ism for Program Translation, J.ACM 15,2 (Apr 1968) 165-175.

Standish, T. A. A Data Definition Facility for Programming
Languages, (thesis), Carnegie-Mellon Univ., Dept. of
Computer Science, May, 1967.

Standish, T. A. An Essay on APL, Carnegie-Mellon Univ.,
Dept. of Computer Science, March,1969.

IC-9000 System Summary, Standard Computer Corporation, 1969.

Van Wijngaarden, A. (ed.), Mailloux, B. J., Peck, J. E. L.
and Koster, C. H. A. Report on the Algorithmic Language
ALGOL 68, Numerische Mathematik 14:79-218 (1969).

Van Zoeren, H. R. LCC Reference Manual, Carnegie-Mellon
Univ., Dept. of Computer Science, Nov., 1969.

Waite, W. M. Base for a Mobile Programming System, C.ACM
12,9 (Sept.,1969).

Wulf, W. A. and Mitchell, J. G. Data, Structures and
Declaration in WREC, Westinghouse Research Labs. Memo,
Pittsburgh, Pa., 1969.

Wulf, W. A. A Note on Parsing WREC-like Languages,
Westinghouse Research Labs. memo, Pittsburgh, Pa., Jan.,1970.

[Le 69] Lett, A. S. and Konigsford, W. L. TSS/360: A Time-Shared
Operating System, AFIPS 1968 FJCC Proc., Part 1:15-18.

[Lo 65] Lock, K. L. Structuring Programs for Multiprogramming
Time-Sharing On-line Applications, AFIPS 1965 FJCC Proc.,
457-472.

[LM 69] Lankford, A. and Mullins, W. Jr. An Introduction to LCC,
Carnegie-Mellon Univ., Dept. of Computer Science, Sept., 1969

[LS 70] Lampson, B. W. and Simonyi, C. Model I CPU Reference
Manual, Berkeley Computer Corporation, Feb., 1970.

[Mi 68] Miller, R. B. Response Times in Man-Computer Conversational
Transactions, AFIPS 1968 FJCC Proc., Part 1:267-277.

[Mit 69] Mitchell, J. G. Memo for Digital Equipment Corporation on
some implementation problems and their solutions for a
fast Fortran compiler with error-checking at run-time,
July, 1969.

[MPV 68] Mitchell, J. G., Perlis, A. J. and Van Zoeren, H. V. LCZ:

A Language for Conversational Computing, in Interactive
Systems for Experimental Applied Mathematics, 1762

[NB 69] Naur, P. and Russell, B. (Eds.) Software Engineering,
Report on a conference sponsored by the NATO Science
Committee, Garmisch, Germany, Oct., 1968.

[Pe 69] Perlis, A. J. Introduction to Extensible Languages, SIGPLAN
Notices 4,8 (Aug 1969) 3-5.

[Ros 67] Ross, D. T. The AED Free Storage Package, C.ACM 10,8
(Aug 1967) 481-492.

[RR 64] Randell, B. and Russell, L. J. Algol 60 Implementation,
Academic Press, 1964,

[Sa 66] Saltzer, J. H. Traffic Control in a Multiplexed Computer
System, MAC-TR-30 (thesis), Mass. Institute of Technology,
Cambridge, Mass., Nov.71966.

[Sh 64] Shaw, J. C. JOSS: A Designer's View of an Experimental
On-line Computing System, AFIPS 1964 FJCC Proc.

[si 66] Simon, H. A. Reflections on Time-Sharing from a User's
Point of View, in Computer Science Research Review,
Carnegie-Mellon Univ., Dept. of Computer Science, 1966:
43-51.

[si 69] Simon, H. A. Lecture given at Carnegie-Mellon Univ. on the
Social Implications of Computers.,

[EER 68] Engelbart, D. C., English, W. K., and Rulifson, J. F.
Development of a Multidisplay, Time-Shared Computer—Facility
and Computer—Augmented Management Research, Stanford
Research Institute Report, April, 1968.

[Fe 64] Feldman, J. A. A Formal Semantics for Computer Oriented
Languages, (thesis), Carnegie-Mellon Univ., May, 1964,

[Fi 70] Fisher, D. Control Structures for Programming Languages,
(thesis) Carnegie-Mellon Univ., Dept. of Computer Science,
May, 1970.

[Go 67] Gold, M. M. A Methodology for Evaluating Time-Shared Com-
puter System Usage, Carnegie-Mellcn Univ., Dept. of
Computer Science, Aug., 1967

[Ge 70] Gentleman, M. private discussion on the ALTRAN method of
bootstrapping and exporting systems.

[I1 e8] Iliffe, J. K. Basic Machine Principles, American Elsevier
Publishing Co., New York, 1968,

[I1 69] Iliffe, J. K. Elements of BLM, The Computer Journal 12,3
(Aug 1969) 251-258.

[Ha 69] RC-4000 Software Multiprogramming System, Per Brinch Hansen
(Ed.), A/S Regnecentralen, Copenhagen, Denmark, April, 1969.

[IBM 69] Command System User's Guide, Form C28-2001, IBM Corporationm,
TSS/360 Programming Publication, Yorktown Heights, N.Y.,
1969

[IF 68] Iverson, K. E. and-Falkoff; A. D. APL\360: User's Manual,
IBM Corporation, 1968.

[Ka 69] Kay, A. The Reactive Engine, (thesis) The Univ. of Utah,
Computer Science Dept., 1969.

[Kn 69] Knuth, D. E. The Art of Computer Programming, Volume I:
Fundamental Algorithms, Addison—Wesley?I?é?-

[Kr 69] Krutar, R. A. To Catch a Thief, preliminary paper on
coroutine-like processes, Carnegie-Mellon Univ., Dept. of
Computer Science, 1969.

[KK 66] Kemeny, J. G. and Kurtz, T. E. BASIC - A Manual for BASIC,
the Elementary Algebraic Language Designed for Use with
the Dartmouth Time=-Sharing System (third editiom),
Dartmouth College, Jan., 1966.

[La 69]° Lampson, B. W. Dynamic Protection Structures, AFIPS 1969
FJCC Proc.: 27-38.

[Ab 70]

[Ba 66]

[Ba 67]

[Bal 69]

[BCC 70]

[BL 68]

[BM 62]

[Ch 67]

[Chr 68]

[C1 68]

[Co 63]

[Di 68]

[DEC 69]

[DSC: 69]

[Ea 69]

BIBLIOGRAPHY

Abrams, P. S. An APL Machine, Stanford Linear Accelerator
Center, Feb., 1970.

Baker, C. L. JOSS: Introduction to a Helpful Assistant,
Memo RM-5058-PR, The RAND Corporatiomn, July, 1966.

Baker, C. L. JOSS: Rubrics, report P-3560, The RAND Corpor-
ation, March, 1967.

Balzer, R. M. EXDAMS: Extendible Debugging and Monitoring
System, AFIPS 1969 SJCC Proc.

An Overview of the BCC Model 500 Time-Sharing System,
Berkeley Computer Corporation, Feb., 1970,

Breed, L. M. and Lathwell, R. H. The Implementation of
APL\360, in Interactive Systems for Experimental Applied
Mathematics, M. Klerer and J. Reinfelds (Eds.), Academic
Press, 1968: 390-399.

Brooker, R. A. and Morris, D. A General Translator Program
for Phrase Structure Languages, J.ACM 9,1 (Jan 1962) p. 1.

Cheatham, T. E. Jr. On the Basis for ELF - an Extensible
Language Facility, Mass. Computer Associates Inc. report,
1967.

Christensen, C. An Example of the Manipulation of Directed
Graphs in the AMBIT/G Programming Language, in Interactive
Systems for Experimental Applied Mathematics.

Clarke, Arthur C. 2001: A Space Odyssey, The New American
Library, Inc., 1968,

Conway, M. E. Design of a Separable Transition-Diagram
Compiler, C.ACM 6,3: 396 ff.

Dijkstra, E. W. The Structure of the "THE" Multiprogramming
System, C.ACM 11,5 (May 1968) 341-346.

PDP-11 Handbook, The Digital Equipment Corporation, 1969.

The Digital Scientific META 4 Series 16 Computer System,

preliminary system manual, Digital Scientific Corporation,
Nov.,l96&

Earley, J. C. VERS - An Extendible Language with an Imple-
mentation Facility (rough draft), Univ. of California
(Berkeley), Computer Science Dept., April, 1969

A-47

and a port name. The portnames are looked up in the designated
processes' name tables and the ports then initialized so that they

are linked together.

The initial activation of a new process can proceed by a CALL
from the creating process, with parameters being passed to the new
subprocess. Control goes to the main program in the called process.
Copies of already existing processes can be simply activated using

ports which they had previously.

This design is not meant as a final scheme for the CBM. In par-
ticular, there is no good reason why processes may not run in parallel
if possible. The RC-4000 Multiprogramming System [Ha 69], for instance,

has a number of features which are easy generalizations of the process

concept which we have outlined here and earlier in chapter 2.

A-46

another, all uses of it will be updated since they access it only in-

directly via some process tahle entry.

Coroutine control between processes is done with an ACTIVATE S,D
instruction, where S is an accessor which refers to a primitive hetero-
set called a port, after Krutar [Kr 69]. A port contains control and
status information much 1ike an MSCW, an accessor for D (put there by
the ACTIVATE instruction) and a process accessor for a port in the

process to which the S-port is connected.

The process activated then has access, through its port, to D
and can later cause control to flow back across the port connection by
itself using an ACTIVATE instruction. When an ACTIVATE occurs, the
process in control is stopped; when later reACTIVATED, it restarts as
if the suspension had not happened (except, of course, that D may have

been changed).

Two actions are needed to establish a configuration of coopera-

ting processes: CREATE and JOIN.

CREATE S,D creates a copy of process S and gives it the name
specified by D. If S is defaulted, a special, virgin process is cre-
ated with name D. An accessor for the created process is placed on
the creator's stack; he can then access the name table of the new

process, etc.

JOIN S,D 1is the means by which ports in separate processes are
linked together. S and D are accessors for primitive hetero-sets

called portnames, each consisting of two parts: a process identifier

A-45

Al18 Miscellaneous Operations

MAKE S,D MAKE is the transfer-function operation and attempts to
make the S-operand to be of type D (D is either a simple
type number of an accessor for an HSD); a reference to
the transformed S-value is placed on the stack as result.
When S points to a PAC, this is part of the allocation

procedure for a set of type D.

HDFLD S,D S is a number corresponding to a field in a set header
(e.g., the MON-bit is field 0, the TYPE field is field 1,
etc.). The st™h field from the set header of the set speci-

fied by D is placed on the stack as a binary word.

POP S The top S items are popped from the stack. MSCWs cannot

be popped, and attempting to do so will cause an interrupt.

PUSH S,D S copies of D are pushed onto the stack. This is useful

for initializing local variables for a routine, etc.

Al9 Inter-Process Control and Communication

In order to allow independent processes to communicate data and
control, a process accessor (type 14) is needed which will allow one
process to access objects in another. A process accessor has two
parts: a process identification part and a non-process accessor. The
process identification part is left unspecified here; it may be a
unique integer or a simple pointer into a process table containing
more complex identification involving external storage addresses, and

so on, Thus, if a process is moved from one type of storage to

A-44

the operands. Any transfer functions which may be needed to change
the operands can he obtained using the MAKE operation (which is de-

scribed below].

The procedure control, relative jump and. sequencing instructions

are handled by one more routine called the control routine. The

storage allocation operations are handled by one routine, and the
programmed extension for MAKE is handled by a single routine. Each
of these routines is called with a parameter similar to those supplied

to the routine which simulates the ALM class of instructions.

Altogether, then, each extended data structure requires four
routines: one for arithmetic and data movement; one for procedure,
jumping and sequencing control; one for storage allocation and recla-
mation;and one to handle transfer functions. A list of the operation
classes, with this partitioning, follows:

CBM INSTRUCTIONS

ALM Class Control Class Storage Class
ADD SQJL SPLIT
SUB BSQJL TINMAKE
NEG JMP UNMAKEJ
DIV JMPB
MUL CALL
AND RETURN Transfer-Function
OR EXIT MAKE
XOR EXITOR
NOT FCALL
copY
MOVE
HDFLD
SETIX
pop
PUSH

Figure Al17-1: List of CBM Instructio: -

A-43

three types of jump, each of which may be conditional, depending on

the setting of the CBM condition code. They are

(1) JMP o,B,« Jump Forward (indirect): the address o is taken as
a pointer to a code position pair [FIRST:LAST] and
used for the jump by adding a.LAST to B and the
current value of the CBM Program Pointer,PRP; « is
the condition code to be checked for a conditional
jump;

(2) JM™pP ,8,k Jump Forward: since o is defaulted, this instruc-
tion is a direct relative jump to PRP+B ; as before,
B must be an integer literal, and « is a condition
setting;

(3) JMPB a,B,«x Jump Backward (Indirect): this is the same as (1)

except that the point jumped to is PRP-o.FIRST+B.

Jump Backward (direct) is not necessary because it is the same as (2),

since B may be positive or negative.

Al7- Operators Applied to Extended Data Structures

In the HSD for a class of extended data structures is a set of
program accessors. The procedures to which they refer act as pro-

grammed extensions of the CBM operations.

One routine simulates all the ALM class of instructions. It is
activated with a set consisting of the skeleton of the instruction
to be simulated and its operands as a parameter. The CBM will have

replaced any implicit stack operands by explicit stack accessors for

A-42

M

0| TYPE

N|MSCW EXITOR ADDRESS

[ENT] H]
W| STATUS INFORMATION DISTANCE TO PRECEDING MSCW
D IN THE STACK
INDEX INTO CALLING CODE CODE SET ADDRESS

Figure Al6-1: Format of a Mark Stack Control Word

There are three possible ways of invoking a routine:

(a) a function call can occur in the course of obtaining an
operand value (Auto/Execute) or by a FCALL instruction;

(b) the CALL instruction can be used;

(c) an interrupt can cause routine activation, and the called
routine can view its activation as resulting from a call; thus

interrupt routines can be initiated by either hardware or soft-

ware.

In the diagram of an MSCW (Figure A16-1 above), ENT describes the
type of entry ((a), (b), or (c) above) and HWD tells which half of
the word specified by the indexed program accessor contains the next
instruction to be executed. Note that both the EXITOR address and
the program address have no types associated with them since they can

only be code sequences [because of the way they are created).

Al7 Relative Jumps

One last simple control mechanism is the ability to perform the

relative jumps required in the TFI mechanisms. Basically, there are

A-41

and are accessed relative to the MSCW, using a relative stack address.
Thus, the parameter cell is item 1 above the MSCW
and the first cell for a local variable is item 2, and so on. The
allocation of local variables is simply a matter of using the PUSH
operator to make space for as many cells as necessary,

The CALL operator, then, has two arguments: the first speci-
fies the routine to be called; and the second specifies the parameter
for the call. The form of the instruction is

CALL routine,parameter
If the routine address is omitted, the top of the stack is used. If
the parameter is omitted, an ''undefined" element is passed to the

called routine.

Mark Stack Control Words

The main mechanism for implementing calls, returns, and exits
is a data type called a Mark Stack Control Word (MSCW), an atomic
element which can only exist on a stack. The MSCW must contain
the following information:

(i) status information of the calling routine,

(ii) a link to the MSCW for the routine which called the cur-

(iii) the program counter to be used to restart the current
routine once the called routine returns control,

(iv) the address of the exitor routine (if any) for the cur-
rent routine,

(v) some indication of the manner in which the 'call" is being

made.

A-40

user interrupts occurred. To summarize, the action which occurs when

some routine relinquishes control via an EXIT a. is the following:

(1) most of the action of a return (e.g., picking up the MSCW which
describes the call) is performed, except that control is given
directly to the exit routine for the routine which initially

performed the calli

(2) the MSCW is unlinked from the stack just as if a normal return
had occurred, and the exit-condition is placed on the stack for
possible use by the exit routine; if the exit routine should
itself execute an EXIT or RETURN, it is speaking for its host.

If no exitor has been appointed by the time a call is performed, then

any exit will cause an automatic exit from that routine with the

original exit-condition being passed back until some routine in the
call hierarchy is encountered which has an EXITOR. If none such exists
an interrupt will occur. Exitors can be deleted by executing an

EXITOR command with no parameter.

One also needs to be able to pass parameters to a routine
when calling it, and provide for local variables, residing on the
stack, for the called routine. First, only one parameter is al-
lowed to be passed with a call, and that parameter will always be
put on the stack immediately above the MSCW for the call by the CBM,
0f course, since that parameter may specify an entire set, there is
no restriction inherent in the single parameter constraint. If no
parameter is passed, that stack entry is made to be undefined
(type 0).

Local variables sit on the stack above the parameter cell,

A-39

then an interrupt occurs; the IPS can then recover from such a prob-
lem by using the REVERT algorithm in section 4C3C and re-create in-
terpretive control to handle the problem. In order to accomplish
this, each code sequence (which is a primitive set in the CBM) must
have a validity bit in its header for that purpose. But then in order
to check for validity after a call, the CBM must be able to reference
the header of the active code sequence as well as the next instruction
to be executed in that sequence. Maintaining an indexed form of ac-
cessor as the program counter for the CBM solves this problem because
indexed accessors always point at the head of the set referenced,
using the index field to select one item in that set.

As outlined above, we also wish to handle the counterpart of a
subroutine call, namely an EXIT with an abnormal condition. To ac-
complish this there is a command

EXITOR «a
which supplies a program address o to be used whenever an exit con-
dition arises. An EXITOR can be specified for every call, but can
also hold for some longer time such as the entire activation of
the particular routine which is its "host". When a routine is called,
there is no exitor for it until one is specified by this command.
Whenever an exit-condition is given as the result of a call, the
exitor is given control; it can then inspect the exit-condition:
perform cleanup actions for its host routine; and either propagate
the exit-condition backward,by itself executing an EXIT, or choose
to continue execution of its host routine. This method was heavily
used in the LC2 system [MPV 68] and proved of great value in

"unwinding' control when the user requested it or when errors or

A-38

An MSCW contains enough relevant information to implement CALL, RETURN
and EXIT; the exact form of an MSCW will be discussed after the CALL

mechanism is described.

In order to implement the TFI, the act of returning from a sub-
routine must check that the code to which control is being returned

is valid. If it is not,

A-37

the three because of the number of storage accesses needed. The sec-
ond alternative is closely related in type to the third, but has pos-
sible savings in virtual memory systems because of the relative
closeness of the cells in the HSD. The most efficient of the group
is the first, since it allows the use of a program which can do much
more powerful things -- such as automatic extension of a set -- and

can be more efficient.

Al6 Procedure Call and Return Mechanisms

Any sequence of CBM code may be treated as a subroutine. Since
instruction sequences aiso have limits associated with then, attempt-
ing to execute past the last instruction of such a set will cause a
return to the calling routine. A code sequence does or does not re-
turn a value (when terminated in this way) depending on whether or not

it leaves a value on the stack when it terminates.

Returns can also be done explicitly, using the RETURN operation:
RETURN A
If A is present, it is the value to be returned, with Auto/Fetch being
applied if necessary. To return with a return-code, indicating an ex-
ceptional condition, the operation
EXIT A
is available. A is the return-code; if omitted, it is taken to be

the .item on the top of the stack.

A CALL pushes an item called a Mark Stack Control Word (MSCW,

type 13) onto the stack, which MSCW is linked to the previous one.

A-36

references can be used primarily for linking hetween sets. While not
a necessary constraint, this division of uses for accessors seem right,
in that one ought to index into indexable structures and link or

point into non-indexable structures.

Indexing into a hetero-set results in an indexed accessor of the
same form as those for homo-sets; the action associated with the in-
dexing is not, however, as simply described. More than one method is
available in order that there be some flexibility in the amount of in-
formation needed to index. Indexing can always be done by the CBM's
inspecting the hetero-set itself; or it can be accomplished somewhat
more efficiently using the template in the HSD describing the struc-
ture class; or finally, it can be done by one of the routines, called
the indexor,whose address is in the HSD. This range of possibilities
compares favorably with the implementation facility discussed by
Earley in his paper on VERS [Ea 69]. The order of attempted:applica—
tion of these methods (the first which is rfound applicable is used) is

(1) 1if the HSD contains an address for an indexor routine, then

call that routine with the stack in the configuration for a nor-

mal call with the index and reference items as parameters;

(2) if the HSD contains a template for the structure, then use

that to calculate the position of the item specified by the index

part of the accessor; or

(3) if neither (1) or (2) holds, then sequence through the

hetero-set, using the limit values of the individual elements of

the set to move from inner set to inner set.

The last alternative will always work but is the least desirable of

A-35

When the index for an access is known at creation time of a CBM
instruction sequence, such an indexed accessor can be placed into the
code in order to gain some efficiency by binding the accessor then,
instead of re-creating it on each eﬁecution of that code. One can
change an accessor from the set to the indexed form simply by chang-
ing the S/I bit from 0 to 1,and conversely. If a set accessor is thus
changed to an indexed accessor, the accessor then looks like an indexed
aceessor - for the last element of the set, because the index field

is in the same place as the limit field is normally.

The index field can be set by the SETIX operation which uses the
source as the index value and the destination operand as an accessor
whose index value is to be set. If the accessor is not an indexed
accessor, this operation will make it one by setting the S/I bit to
1. The destination is taken either as a reference to the accessor to
be changed, or as a literal if so used. If the index value is defaul-
ted, however, the accessor on the stack is changed, and not what what

it refers to.

Throughout such sequencing, the address field of an indexed ac-
cessor points steadfastly at the header for the set accessed. Hence,
no direct reference is allowed to exist which points into the middle
of a homo-set, except possibly momentarily in the "hardware'' of the

CBM.

This same scheme is used for indexing into hetero-sets, and al-
though 'a direct reference may be used for accessing an element of a

hetero-set, in many cases only indexing is required, and direct

A-34

This definition of field descriptors allows them to be used as
operands in any of the ALM class of instructions without any special
instruction notation being needed to say that field extraction is

being done.

Al5 Sequencing Through Sets

Given an accessor which points to an element of a structure, we
can sequence to the next element using the operation SQJL ,B .
This operator works only on accessors. After the sequencing part of
the operation is done, the second operand B is used to effect a change
of control depending on whether there was or was not an element to

which to sequence.

SQJL jumps to B if there was no 'next' element, or allows control
to continue normally if the element was not the last of a set. The
first operand, if present, tells by how much to index forward or back-
wards (in terms of value items, not words); it may be any one of the

allowable operand forms except a field descriptor.

Indexing in the CBM is done using an indexed accessor; such ac-
cessors differ from the standard only in that they contain an index
value in the field normally used for a limit-value for bounds testing.

Only the S/I bit differentiates between the two breeds of accessor.

The software operations which allow one to sequence through a
set (whether homo- or heterogeneous) are the SQJL operation given
above, and its counterpart BSQJL (Backward Sequence and Jump if Last).

Both BSQJL and SQJL check for out-of-bounds accessing.

A-33

copies it exactly as it is.

Field descriptors (type 5) are used in conjunction with accessors
in order to gain easy access to subfields of basic data structures.
These basic data structures include bit strings from binary words,

byte fields from byte sets and the fields in a set header.

If a field descriptor is used as an operand in an instruction of
the ALM class, the address with which it is associated is the position
on the stack which would have been used if normal accessing were be-
ing used and that operand had been defaulted. We will use the follow-
ing notation for field descriptors: (a,B8:y) means index into the
set specified by some accessor, using o as the index value, and then
take bits B8 to y inclusive from the designated item. Thus, (3,0:0)
would access the high-order bit (bit 0) of the fourth word (since
numbering is from zero) in a set referenced by some accessor. If
the item from which a field is being extracted is a byte set, then
B and y are considered byte positions starting at the word specified
by a. In that case, neither o nor g is restricted to be less than
4, even though our version of the CBM has only four bytes per word.
The byte string thus extracted is treated as a normal byte set by the
CBM and any spare bytes in the last word of that set will be set to
the value of the "ignore" character which was mentioned in the defi-

nition of byte sets.

When a field descriptor is used as an operand and the associated
stack item is not an accessor, but is of some other type allowable

for the instruction being executed, extraction is applied to it.

A-32

an accessor involves an extra memory access to the set header in order
to increment its reference count. Similarly, destroying an accessor,
even hy simply overwriting it, must decrement the reference count of
the set to which it refers. Decrementing a reference count to zero
will cause an interrupt in order to reclaim the storage for the set
which is no longer referenceable. Reclaiming the storage for exten-
ded data structures is accomplished by invoking a routine,called the
destroyer, for the structure; it is one of the routines which are

invoked via an accessor in the HSD for a given class of data structure.

The operations available for accessors are restricted in order
(1) to guarantee knowledge of set ownership; (2) to provide memory
protection across processes and procedures; and (3) to protect unde-
bugged programs from themselves by catching invalid accessors when
they are made (i.e., as soon as the program attempts to create or
modify an accessor in an invalid manner). One may copy an accessor;
sequence from item to item in a set; index, using an accessor, for
purposes of accessing a particular item of a set; diminish or increase
the limit-value in an accessor -- provided it remains within the
bounds of the referenced set; extract the limit-value for inspection;

and create an accessor (by creating a new set).

COPY can be used to manipulate accessors as data and has the side
effect of incrementing the reference count of the set which the ac-
cessor points to. Linking from set to set, as is often done, is also
accomplished by the COPY operation, since it does not coerce the item

of which a copy is to be made to be any special type, but simply

A-31

In this class of instructions we have included COPY and MOVE, the two
primary operations used for moving data in the CBM. The rationale
behind this decision is that all the operations in this class (which
we shall call the ALM class) can also be executed with the "?" option,
in order to set the condition code without actually affecting the
destination operand. The code is set by the COPY and MOVE commands
depending solely on properties of the source operand; these proper-
ties are outlined later with those instructions. Note also that cyD
denotes Auto/Fetch applied to D; ch denotes the address of the value

specified by coD and cD means D, if D is a literal, or the item dir-

ectly referenced by D, if D is a non-literal reference.

All of ADD,SUB,NEG,MUL,DIV, AND, OR, NOT, XOR have their usual
interpretations with the operands as given in the ADD example earlier.
COPY and MOVE both manipulate data. The only difference between them
is that MOVE involves Auto/Fetch and Auto/Store coercions on its oper-
ands, whereas COPY does not. Thus, COPY could be used to replace an
accessor by some other value (possibly also an accessor), but if MOVE
were used for the same purpose, Auto/Fetch and Auto/Store would co-
erce the arguments so that only non-accessors were used in the actual

operation.

Al4 Operations on Accessors

An accessor contains a base address and a limit field, defining
a bound on the set referenced in terms of a number of words. For
storage reclamation purposes, the reference count associated with a

set must include all references to it; thus, the act of simply copying

A-30

the condition code to indicate a zero result, although no result is
actually produced at the destination. This was the previously men-

tioned special case in which it was not necessary that DeA.

Al2 Sets as Operands

In the CBM, most data manipulation instructions apply equally
well to unit sets, general homo-sets, and to extended data structures.
In particular, arithmetic operations can be used on entire homo-sets.
Thus, ADD S,D where S and D both refer to 5-element sets, say,
would add corresponding elements of the two sets, just as in Iverson's
APL [IF 68]. For a morz thorough discussion of this, see Section 5E3,

CBM Instructions.

A13 Arithmetic, Logical and Data Movement Operations

Table Al3-1 is an outline of the arithmetic, logical and data

movement operations of the CBM:

OPERATION EFFECT OF OPERATION
ADD S,D ch < COD + COS
SUB S,D ¢yD « ¢oD - COS
NEG S,D ch + 0 - cOS
DIV S,D ch + cOD / CDS
MUL S,D ch 2 cOD X cOS
AND S,D ch - COD A COS
OR S,D ch + COD % cOS
XOR S,D ch “ COD ¥ COS
NOT S,D cyD « ~COS

copy S,D D « ¢S

MOVE §,D ¢,D + ¢S

Table Al3-1

A-29

L11]z ADD S,D

This form adds the operand specified by S to that specified by
D.
The result is stored into the place specified by applying Auto/Store

to D. The complete instruction format is

ADD 1y1{ T T S D

Because of these four cases ([00], [01], [10], and [11]), the
ADD operation in our CBM can be one of .5, 1, 1.5, 2.5, 3.5, 4 or 4.5

words long, depending on the presence or absence and form of S and D.

All Condition Testing and Setting

Sometimes the restriction that DeA is unnecessary. Certain
operations, which include at least the arithmetic, logical

and data movement operations, set the condition code of the CBM, de-

pending on the value of the result of the specified action. This
condition code can then be used to determine branching within a CBM
program. It is useful to be able to set the condition code as need-
ed by some operation without altering the items involved in the oper-
ation. For this reason the above mentioned class of operations may
be performed without changing any values, only setting the CBM con-
dition code. This is denoted by appending a question-
mark ("'?") to the end of an operation mnemonic, a device similar to

one used by Iliffe [I1 68]. Thus, ADD? -2,2 is valid and sets

