TA-3 — 7

A Flexible Measurement Tool For Software Systems

P. Deutsch
C. A. Grant
University of California, Berkeley

Abstract

Implementers of large programming systems have come to realize the desirability of a flexible
facility for measuring these programs. The applications of such a facility are tracing, monitoring for
special conditions, and gathering statistics for performance evaluation.

Our work will discuss a particular measurement tool, called the Informer, now being used to measure
the time-sharing operating system of the SDS-940 at Berkeley. The Informer provides an environment in
which user written programs may serve as measurement routines. Measurement routines may be inserted
dvnamically to be called when control reaches arbitrary locations within the measured program. An
important quality of this measurement facility is that no error in its use can cause a system failure.
Also, system degradation due to measurement programs can be automatically controlled. The Informer is a

software system - no hardware probes are employed.

..-J- _ﬂ"--':"‘h.

e L OGUC CAONN

The Informer is meant to attack threeproblems
that arise continually in large programming sys-
tems: debugging, performance anlaysis, and envi-
ronment analysis. We first consider these prob-
lems in more detail before describing the work-
ings of the Informer itself.

Large programs always have errors in them.
These errors fall into two categories:

A) Logic bugs - these are errors that cause
the program to operate incorrectly. That is, the
program gives wrong answers or has improoer side
effects or 'blows up' in some manner. Many pro-
gram bugs are timing dependent and occur unpre-
dictably, when the environment of the program
achieves some exceptional state. Timing depen-
dent bugs are rarely reproducible, and represent

the thorniest of problems in debugging.

B) Performance bugs - a program may operate
correctly but manage resources inefficiently in
doing so. In the case of a time-sharing opera-
ting system, response time may be much longer or
CPU utilization poorer than analysis indicates
the hardware configuration could provide. The
reasons for this lie in inefficient or improper
algorithms for utilization of the hardware.

We are particularly interested here in tools
tor dealing with programs where the flow of con-
trol is dependent on many external conditions
which change dynamically at a very high frequen-
cy. The flow of control is highly unpredictable
for any real run of such a program and generally
impossible to recreate. 1In this paper we will
use time-sharing operating systems as an example.
0f course, the best path to reliability in such
complex systems is careful design rather than
persistent or even inspired debugging. However,
the tools required for rigorous elimination of
logical errors are still in an embryonic state
and the statistical methods for a priori perfor-

mance analysis tend to be unmanageable in
real-life cases. In terms of effort required to

}.H..I

reach an operational system, flexible debugging
tools seem to be the best investment at present.

A global (user's-eye) evaluation of the per-
formance of a time-sharing operating system might
be based on a wide range of characteristics in-
cluding convenience of use, reliability, and res-
ponse times. However, the system implementers
need quite different data to determine how best
to improve system performance: for example, fre-
quency of use of the various software components,
load on the hardware components, and quality of
service being delivered in response to particular
user requests. Since these quantities depend on
the behavior of unpredictable real users, they
can only be obtained while the system is in oper-
ation, and must be obtained without affecting
that operation.

Information about the environment of a program
is also useful in improving ('tuning'') an exis-
ting program or influencing the design of a fu-
ture program. For example, in a time-sharing
operating system one might want to know the fre-
quency of user requests from consoles, the dis-
tribution of memory requirements, Oor the commands
or sequences of commands that are used most
often. This information can only be obtained by
studying the system while in use by a real user

- community.

Our implementation of the Informer has been
confined to one fairly simple machine, an SDS-940
supporting the Berkeley time-sharing operating
system{l]. This machine has only three central
registers, and a l4-bit address field which is

~also the size of the address space. It allows

multi-level indirect addressing with the option
of indexing at each level. It normally operates
in a time~shared mode in which both the user
address space and part of the separate operating
system space are paged. Any page may be
protected from writing or may be "missing’': an
attempt to write on a read-only page or access a
missing page results in a trap, whether the at-

TA-3 - 8

tempt is being made by the user or by the opera-
ting system. Programs running in the operating
system address space may access the user space
with no software intervention and with all the
user ' s protection in force. The 940 has an ex-
tensive priority interrupt system (the operating
system uses at least seven different levels) and
an independent trap mechanism. The simplicity of
the machine design simplified our work, but we
believe the Informer framework is largely
machine-independent and will indicate solutions
to a few of the problems which arise from differ-
ent processor desligns at appropriate points in
the body of the paper.

2. Goals

The primary goal of the Info-mer is to provide
a tacility in which a user of .n operating svstem
can gather any specific measv ement of that sys-
tem he desires. The Inform . allows users of the
facility to name an arbitrary point in the opera-
ting system (called a checkpoint) and submit a
program which is to be executed in the environ-
ment of the operating system each time the flow
of control reaches the checkpoint.

The second goal is that no error on the part
of a user or his measurement programs can cause
any interference with the continued use of the
operating system. This implies that any program
which is submitted by a user as a measurement
routine must be rejected if there is any way it
could adversely affect the system. In particu-
lar, 1t must be checked that the measurement
routine will never store into the code or data of
the operating system or in any other way modify
the environment of the operating system. Also,
it must be checked that the measurement routine
will not exceed what is considered to be the
maximum amount of exXecution time which can be
spent at the particular checkpoint from which it
is called. This includes overhead due to the
Informer itself.

An important goal is to minimize the time and
effort required by a user to compose, submit,
debug and execute his measurement programs. The
approach 1s to make every step of the measurement
process as flexible and interactive as possible.
To facilitate composition the Informer will ac-
cept measurement programs in any language which
can be assembled or compiled into machine lan-
gcugate. There are very few restrictions on the
form that measurement programs may take. By au-
tomatic (program) verification of the integrity
of a measurement program, the time lag between
submission of a routine and its acceptance or
rejection is on the order of milliseconds. 1In
order to allow measurement programs to be debug-
ged while actually in the environment of the
operating system (and for other reasons), a gen-
eral communication facility exists between meas-
urement programs and user programs. |

Finally, 1t is a goal of the Informer that a
measurement once initiated will continue as long
as desired. This implies that there is some
control over who can modify or delete a measure-

ment routine, and also, that part of the standard
crash recovery procedure o0f the operating system
includes code which attempts to permit continua-
tion of those measurements which were in progress
before the crash.

3. Program/Informer Linkage

The Infcrmer operates by arranging for speci-
fic pieces of code submitted by a user, called
measurement routines, to be executed whenever
control reaches given instructions, called check-
points in the program being investigated. (The
genesis of the measurement routines 1s described
in the next section of this paper). The part of
the Informer which performs this task is called
the Loader. The Loader first verifies the wvalid-
ity of the submitted measurement routine, then
relocates it into the address space of the opera-
ting system, and finally attaches the measurement
routine to the operating system by the simple and
time-honored technique of patching: refer to fi-
gure 1:

J

A ADDR | — KA GOTO £

Y
NS
(M.R.=— measurement .

routine) & CALL SAVE

CALL M.R.
CALL RESTORE}

pOP ADDR

oy
v
L}
' -
N -
-# d + |
3 -
- -
*
.x " . . . : " \ - . S i’ T - H .- . “u- . gl e ~ S TS T s e ! = - 0 :l a - [L ' LN T o e - s ™~ T ye 1 . . T
' ..ijt' ‘:.:' A) e LY « '.:'L SO "-"H:" .o '1.. 'L'._ LI '-..i oo '.'u.'* - .‘ _I'.' v . A ST " ol e = - - =T - L = * A — . ’ - . h

Figure 1. Connecting a checkpoint

In the figure, ''save' and ''restore' refer to
routines to store or load the complete machine
state (registers, machine conditions, etc.).
However, there are two factors that complicate
this scheme. One is the requirement that the
operating system be unaware of the presence of
the Informer. This means, in particular, that
the Loader must be aware cf some unused area of
the operating system address space in which to
place measurement code and its asscciated data.
This information cannot be supplied by the user
of the Informer, but must be designated by the

operating system author. ,

A complication to this procedure may occur on
machines with variable instruction sizes or with
instructions which. for some reason are not trivi-
ally displaceable to different locations. Patch-
ing is only slightly more expensive on such
machines.

The other complication to the simple patching
method arises from the desire to measure routines
at different priority levels: for example, to
trace both a routine making entries on a disk
queue and an interrupt routine taking them off.
There seem to be only two solutions to this prob-
lem:

1) Disable interrupts for the duration of the
measurement process, including saving and resto—
ring the state. This i1s highly undesirable.

2) Provide separate saved-state areas for each
- priority level which is actually being measured.
(This can be done with a stack on sufficiently
talented machines). These areas must include the
return link for the save and restore routines.
This approach 1is clearly preferable.

We have assumed that the operations of saving
and. restoring the machine state are relatively
chezp, On multiple-register machines such as the
IBM 360 this is unfortunately not the case.
Therefore, at least as long as this style of
machine architecture remains in vogue, it is bet-
ter to require the measurement routines them-
selves to save and restore the registers they
use. The mechanism for enforcing this will be
discussed later.

There may be specific reasons to forbid inser-
tion of a measurement routine at a particular
location:

1) The location may be in a data area rather
than code, consequently patching the location
would invalidate the data;

2) The location may be referenced in some
non-standard way ("execute' instruction, indirect
addressing, modified or used as data);

3) There may be unusually severe timing con-
straints in that piece of system code, such as a
series of instructions which must be performed
uninterrupted to set up an I/0 operation.

These conditions cannot be detected by the
Loader on its own: the author of the operating
svstem must supply the Loader with a table of
areas where patches are prohibited. If this
table is given in symbolic form, then it is only
necessary to re~link the Loader to the operating
system when the latter changes, using a standard
linking loader.

4. Measurement routines

In contrast to most other system measurement
facilities|[2], the Informer allows nearly arbi-
trary pieces of user-written code as measurement
routines. In fact, the principal task for the
Informer is to guarantee that user measurement
routines cannot violate the integrity of the sys-
tem. This means, 1n particular, that such rou-
tines may not: store or branch into the opera-
ting system; perform illegal or privileged in-
structions; execute for an uncontrolled length of
time; modify themselves or other measurement rou-
tines; have the possibility of being re—-entered
before being exited; or read data or code of the
operating system which are considered private
even to some classes of system measurers. If the
Informer finds that the restrictions have all

) |.-'...... - ;_r..l - "';'_ -.l ‘._. . ’ . I"-', ' """I 4T, - , ' - t‘-q.l'. ol) .,'I * . ;l 1“-. R
- . v bl E - e m . -) 2 - - ' r L . . .
L

'3
I
3,
."'

b

.t.
e m*“." ’ !

‘.I:II‘

::h#.

>,

’

a

(1)

TA-3 -9

been adhered to, it copies the routine into the
area where it will run. |
To simplify the checking of user-supplied rou-
tines, the Informer forces them to structure
their addressing environment into a number of
distinct, internally homogenous regions: pro-

gram, literals, temporary cells, switches, and
Ctemporary address cells. The significance of the

first three is obvious. Temporary cells used for
addresses are distinguished from ordinary tempor-
aries, because the set of legal values for the
former is restricted to pointers to ordinary tem-
poraries. Switches provide for changing the con-
nections between checkpoints and measurement rou-
tines: the user of the Informer may set a switch
to point to a measurement routine or a no-op.
Measurement routines are also only allowed to
call other routines by executing switches.
Roughly speaking, program may be branched to or
read; literals may only be read; temporary cells
may be read or written; switches may only be
executed; and temporary address cells may be
stored into with pointers to temporary cells and
used as indirect address pointers. When the In-
former copies the routine into the measurement
code area, it properly relocates references to
each region.

The check against illegal types of references
to storage and illegal opcodes is made by the
Loader. The heart of the procedure is a vector
giving type information about each opcode, to-
gether with a matrix which specifies which re-
gions may be referenced by which kind of opcode.
This table is presented as figure 2. Notice that
lndexing is permitted only for load and
non-memory instructions.

o [re Jrac]ow],

040 S~
STORE -m. _.
STORE INDIRECT --- 1
BRANCH m--- '
EXECUTE | (1)

| (IRRELEVANT) ||

NON—~ MEMORY

PC:.Program Cell
TC.Temporary Cell
TAC.:Temporary Address Cell

SW . Switch

N = allowed ;
a llowed subject to flow restrictions §

interpreted

Figure 2. Address checking

TA-3 — 10

The contents of temporary address cells can
only be checked-when the measurement program is
running. The Loader transforms every instruction
which stores into a TAC in a submitted measure-
ment routine into a subroutine call to a runtime
checking routine followed by the actual store.
The checking routine ensures that the quantity to
be stored lies within the range of TC addresses
allowable for this measurement program, and then
permits the store to be done.

System calls and nonexistent instructions are
illegal. However, certain I/0 instructions or
instruction sequences may be permitted if the
Informer is being used in conjunction with hard-
ware measurement tools: 1in this case it 1is
clearly desirable to give measurement routines
control over this hardware.

In a machine with a large number of state
registers, the Loader may identify which regis-
ters are actually modified by the measurement
routine, and then surround the routine with code

to save and restore those registers, asgs an alter-

native to always saving all the registers.

Flow tracing within a routine is confined to a
simple check that there are no backward branch
instructions. An exception is made for a few
loop-closing sequences, and then only if - the
upper bound on the number of repetitions is a
constant. . o

Flow checking is complicated by the fact that
measurement routines are allowed to call other
measurement routines, through switches as men-
tioned above. This requires checking that a rou-
tine cannot call itself, by scanning the routine
(and the routines it calls, recursively) for
"EXECUTE switch' instructions, whenever a switch
is changed. _

To guarantee that no errors can result because
of priority interrupts, the Informer requires
that each instruction in the operating system
have an associated fixed priority level. A rou-
tine at a given priority level can only be inter-
rupted to start execution at a higher priority
and otherwise runs to completion. There is a
table, made available to the Informer by the
operating system, which identifies the priority
level with each area of measureable instructions
in the operating system. This table can be main-
tained similarly to the table of unmeasureable
instruction regions. In fact, these two tables
can be merged in a natural way. Thus a priority
level can be assigned to each measurement routine
as well, which is the priority of the instruction
where the patch was made. However, the measure-
ment routine may call other routines by executing
a switch. Since measurement routines are assumed
not to be reentrant, the Informer must ensure
that no routine can be called from routines or
checkpoints of differing priorities. The check
‘must be made again whenever the setting of any
switch is changed. The check essentially con-
sists of tracing through the code looking rfor
switch executions, as for flow checking: a call-

ed routine or switch with no assigned priority
receives the priority of the calling routine, and

an already assigned priority different from that
of the caller causes an error.

A related problem arises in connection with
two types of Informer subroutines described
later: they are executed as part of the measure-
ment routines, so they must exist in multiple
copies, or at least some part of them which lo-
cates temporary storage for the subroutine must
have several copies. However, it is very waste-
ful to provide a copy for each different priority
level that exists in the machine. To avoid this,

the Informer maintains a list of active priority

levels, i.e. those priority levels such that some

piece of code at that level has been patched.
The number of copies of these routines is just
the maximum number of simultaneously measurable
priority levels, an assembly parameter of the
Informer.

The timing check consists of making a
worst—case estimate of the time required to exe-
cute the measurement routine. If loops are not
invoived, this is just the sum of the individual
instruction times (with upper bounds for instruc-
tions with data—-dependent timing). Since the |
starting and ending values of loops are required
to be constants, the longest possible time spent
in a loop is just the maximum number of itera-
tions times the maximum time per iteration; of
course, this calculation may have to be nested
tfor nested loops. If the routine executes a
switch, the Informer must recalculate all the
maximum times every time the user changes the
setting of a switch. | |

The Informer incorporates a map of the opera-
ting system similar to the one which associates
priority levels with locations in the code, which
gives maximum allowable times for measurement
routines inserted at various places in the sys-
tem. For example, it might be allowable to in-
terrupt the processing of a system call (SVC,
SYSPOP, ...) for several milliseconds, whereas
the time limit in a drum interrupt routine might
only be 50 microseconds. Once the maximum time
for a new measurement routine has been computed,
the Informer will reject the routine if this time
exceeds the maximum allowable time for the loca-
tion to be patched minus the sum of the execution
times of the routines already patched into the
region.,

For the purpose of allowing a measurement rou-
tine to alert a user program about a critical
condition, one switch is specifically defined
such that if a cail to it 1s included 1in a
measurement routine,

when executed will send a wake-up to the user

program. The implementation of the subroutine

will vary from system to system, but the intent

is to allow a user process to wait in a "blocked"
condition, which does not consume any CPU or core
resources, until the wake—-up arrives.

Two kinds of runtime errors cannot be antici-
pated at load time. One is an addressing viola-
tion which may be caused by an indexed instruc-
tion. The other is an attempt to store an inva-

lid pointer into a TAC. In keeping with the
Informer philosophy of allowing maximal flexibil-
ity, each of these operations will store an error
message in a fixed TC if the operation fails. In
this way the measurement routine itself can de-
cide what to do about the error.

5. User intertface ,

When attempting to design and construct a com-
plex facility, a reasonable approach is to decide
on a set of primitive operations, combinations of
which will provide the full power desired. This
philosophy has the advantage of making implemen-
tation of the facility simpler, while allowing
for flexible and perhaps unanticipated use of the
facility. Accordingly, the interface between the
user and the Informer consists of the following
primitive functions:

NEW MEASUREMENT PROGRAM (<user-space address>)

~ Calling this function requests that the pro-
gram which exists in the user address space at
the specified address be copied into measurement
program space in the environment of the operating
system. If the program is found to be unaccepta-
ble, then the function returns a value which
explains the reason for rejection. If the pro-
gram is valid, the function returns a value which
may later be used as an identifier of the submit-
ted routine.

ATTACH(<identifier>,<operating system address>)

This function creates a checkpoint at the spe-
cified address, and connects it to the specified
routine if the request is valid.

DELETE MEASUREMENT ROUTINE(<identifier>)

All checkpoints attached to the specified rou-
tine are disconnected and the routine is removed
from measurement program space.

DETACH CHECKPOINT(<operating system address>)
If the specified address is a checkpoint, the
checkpoint is disconnected from its associated

switch.

SET SWITCH(<switch number>,<identifier>)
The identified routine is associated with the
specified switch.

CLEAR SWITCH(<switch number>)

I1f there is a routine associated with the spe-
cified switch, it is detached. The switch is
changed to a NOP, therefore any routine which
executes that switch will be affected.

BLOCK ()
This function causes a pause in the user pro-
gram until one of his measurement routines causes

a wake-up.

EXECUTE IN CONTEXT(<instruction>)

This function executes the specified instruc-
tion as if it were part of a measurement routine.
The central registers are modified only if the

TA-3 — 11

execution of the instruction does it. The in-
struction may be any instruction which can occur
in a measurement routine, including a SWITCH exe-
cution. The primary purpose of this function is
to permit a user program to have access to the
intermediate results of measurement routines.

ACCESS MEASUREMENT SPACE(<user space address>)

This function causes the measurement space to
be placed in the virtual address space of the
user, with read-only status.

Also to be included in this set of primitives
are functions which when called will return with
descriptions of the state of the user's measure-
ment space. For example:

IS CHECKPOINT? (<operating system address>)

This function will return either yes or no
depending on whether the specified address is
currently serving as a checkpoint,

IS CONNECTED? (<identifier>)

This function returns either no or a list of
checkpoints to which the specified measurement
routine is connected.

6. Summary

Users may construct a measurement routine in
any language, and then requestthat the routine
be relocated into the address space of the opera-
ting system (observed program) to be executed
whenever control reaches a specified operating
system location. The Informer, before granting
a request, automatically does a complete check of
the submitted routine that there is no way that
the routine could cause an error in the operating
system. Capabilities exist to allow communica~
tion between measurement programs and programs of
the user which submitted them. These facilities
may be used for debugging, notification of
events, or coordination of data buffering.

The Informer is two separate modules: the
Loader which is invoked only during the insertion
or deletion of measurement routines, and the Run-
time which is a small package of routines which
must be resident in the address space 0f the
observed program (save and restore state, TAC
verification, etec.). The Loader, which does the
necessary verification of measurement requests is
not resident during measurement and therefore
cannot be considered as perturbing the measured
system.

/. Example
Consider the following experiment to learn the
average length of disk transfer requests. A

measurement routine is constructed which is call~

ed each time the disk driver is entered. The

measurement routine uses two temporary cells la-
belled COUNT and SUMSIZE. For each request, the

routine increments COUNT and adds the size of the
transfer to SUMSIZE. When the user feels a suf-
ficient sample time has passed, he may execute

code to read the values of COUNT and SUMSIZE and

compute the average. This measurement routine

TA-3 — 12

would be very simple and would hardly perturb the

running system.
Other measurement sSchemes might require that

each disk transaction be recorded for later
analysis. Avoiding the collection and analysis
of large volumes of data 18 clearly desirable.

8. Conclusion o | ,
An implementation of the Informer{3] has been
in use on the Berkeley 940 time-sharing system

since 1969. Experience has shown that the facil-

ity is an embodiment of the design goals. Flexi-
ble measurement programs have been written with a
great deal of convenience. Experiments completed
or in progress include: frequency and duration
messurement of system calls, response times to
interactive commands, analysis of operating sys-
tem overhead, and an analysis of user character-
istics analagous to the study done in{#4]. The
overhead due to the Informer is negligible.
(Specifically, the overhead introduced by saving
and restoring of the state of the machine at
checkpoints is roughly 140 microseconds; this is
quite reasonable if the events being measured
only occur every few milliseconds.) All other
overhead is due to the measurement routines them-
selves. Measurement routines may do analysis
themselves, or by using the communication capabi-
lities, pass data to user programs by double
buffering techniques. - '

- Implementation of the Informer required about
four man-monthe of programming effort. Mainten-
ance of the facility has been minimal, and only
entails updating the Informer tables when modifi-
cationg are made to the operating system. The
Informer, once debugged, has never caused a s8ys-
tem crash as far as we know.

Measurement routines are often constructed to
be invoked each time the operating system makes
access to a given datum or data structure. With
the Informer, as described, that would require
a checkpoint at each separate instruction loca-
tion from which access to the data structure is
possible. A hardware capability to trap on
references to specified data words would allow
Informer routinea to be invoked only when the

data was actually accessed. The Burroughs B>00O

meta-bit facility is an example of an existing
computer which could sllow tracing of data struc-
ture accesses as well as the flow of control.

In the case of an environment where there 1is
system information which is considered privileged
even 1o system measurers, then the freedom of
megsurement routines to make sarbitrary read ac-
cesses could be restricted. Any privileged re-
gions could be made inaccessible in the map of

the address space. All indirect reads would be
required to be made through temporary address
cells. (There would now be two classes of such
cells, read TACs and read-write TACs.) Also,
checkpoint locations might be restricted when
the mere information that control has reached a
specific location is considered privileged.

The primary lesson learned from the implemen-
tation, aside from certification of the design,
has been that good documentation is essential to
convenient measurement. While the Informer re-
quires users to understand only those aspects 'of
the measured program that they wish to measure,
documentation must exist from which they may
learn.

The techniques of program verification descri-
bed here may well have implications beyond system
messurement.

The concept of the Informer, as a facility to
allow submission of user written code for
measurement of the operating system with full
protection against system disturbance was intro-
duced by Remi F. Despres in 15958. The authors
wish to acknowledge him as the originator of
the Informer project.

References

1) Reference Manual - Time-Sharing System
Deutsch, P., Durham, L., and Lampson, B.
Project Genie Doc. R-21
Univ. of Celif., Berkeley, July, 1967.

2) A Bibliography on Performance Evaluation

Ferrari, D.
Computer Systems Research Doc. P-1.0/CSR

Univ. of Calif., Berkeley, December, 1970.

3) The INFORMER Users Manual
Grant, C. A. *
Computer Systems Research Doc. R-1.0/CSR

Univ. of Calif., Berkeley, April, 1971.

L) JOSS: 20,000 Hours at a Consocle - A
Statistical Summary
Bryan, G. E.
Fall Joint Computer Conference, 1967.

